Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.336
Filter
1.
Kardiologiia ; 64(5): 3-10, 2024 May 31.
Article in Russian, English | MEDLINE | ID: mdl-38841783

ABSTRACT

AIM: Assessment of WNT1, WNT3a, and LRP6 concentrations in patients with ischemic heart disease (IHD) and obstructive and non-obstructive coronary artery (CA) disease. MATERIAL AND METHODS: This cross-sectional observational study included 50 IHD patients (verified by coronary angiography, CAG), of which 25 (50%) were men, mean age 64.9±8.1 years; 20 patients had non-obstructive CA disease (stenosis <50%), and 30 patients had hemodynamically significant stenosis. Concentrations of WNT1, WNT3a and LRP6 were measured in all patients. RESULTS: The concentrations of WNT1 and WNT3a proteins were significantly higher in patients with IHD and obstructive CA disease (p < 0.001), while the concentration of LRP6 was higher in the group with non-obstructive CA disease (p = 0.016). Data analysis of the group with obstructive CA disease showed a moderate correlation between WNT1 and LRP6 (ρ=0.374; p=0.042). Correlation analysis of all groups of patients with CA disease revealed a moderate association between the concentrations of WNT1 and uric acid (ρ=0.416; p=0.007). Regression analysis showed that risk factors for the development of IHD, such as increased body mass index, age, smoking, dyslipidemia, and hypertension, did not significantly influence the type of CA disease in IHD patients. According to ROC analysis, the obstructive form of IHD was predicted by a WNT3a concentration higher than 0.155 ng/ml and a LRP6 concentration lower than 12.94 ng/ml. CONCLUSION: IHD patients with non-obstructive CA disease had the greatest increase in LRP6, while patients with obstructive CA disease had significantly higher concentrations of the canonical WNT cascade proteins, WNT1 and WNT3a. According to the ROC analysis, a WNT3a concentration >0.155 ng/ml can serve as a predictor for the presence of hemodynamically significant CA stenosis in IHD patients (sensitivity 96.7%; specificity 70%), whereas a LRP6 concentration >12.94 ng/ml can predict the development of non-obstructive CA disease (sensitivity 76.7%; specificity 65%).


Subject(s)
Coronary Artery Disease , Low Density Lipoprotein Receptor-Related Protein-6 , Wnt Signaling Pathway , Humans , Male , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Female , Middle Aged , Coronary Artery Disease/physiopathology , Cross-Sectional Studies , Aged , Wnt Signaling Pathway/physiology , Wnt3A Protein/metabolism , Wnt1 Protein/metabolism , Coronary Angiography/methods , Biomarkers
2.
Med Oncol ; 41(6): 151, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743149

ABSTRACT

Prostate cancer (PCa) is the second most common cancer and the fifth leading cause of cancer-related death among men. A comprehensive understanding of PCa progression is crucial for the development of innovative therapeutic strategies for its treatment. While WDR1 (WD-repeat domain 1) serves as a significant cofactor of actin-depolymerizing factor/cofilin, its role in PCa progression remains unknown. In this study, we demonstrated that knockdown of WDR1 in various PCa cells substantially inhibited cell proliferation, migration, and invasion in vitro, as confirmed at both the cellular and molecular levels. Moreover, the overexpression of WDR1 promoted PCa cell proliferation and metastasis in vitro. Mechanistically, we showed that the application of lithium chloride, an activator of the Wnt/ß-Catenin signaling pathway, restored the suppressive effects of WDR1 deficiency on cell proliferation and migration in PCa cells. Our findings suggest that the WDR1-ß-Catenin axis functions as an activator of the malignant phenotype and represents a promising therapeutic target for PCa treatment.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Prostatic Neoplasms , Wnt Signaling Pathway , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Wnt Signaling Pathway/physiology , Cell Movement/genetics , Cell Line, Tumor , beta Catenin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
3.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745304

ABSTRACT

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Subject(s)
Mice, Inbred C57BL , PPAR gamma , Physical Conditioning, Animal , Pulmonary Disease, Chronic Obstructive , Wnt Signaling Pathway , Animals , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Wnt Signaling Pathway/physiology , Mice , Physical Conditioning, Animal/physiology , PPAR gamma/metabolism , Disease Models, Animal , Lung/metabolism , Lung/physiopathology , Inflammation/metabolism
4.
Bone Res ; 12(1): 33, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811544

ABSTRACT

Wnt/ß-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/ß-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/ß-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired ß-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of ß-catenin phosphorylation, but necessary for LRP6/ß-catenin and N-cadherin/ß-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active ß-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating ß-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/ß-catenin signaling and trabecular bone formation.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-6 , Mice, Knockout , Osteoblasts , Osteogenesis , Vacuolar Proton-Translocating ATPases , Wnt Signaling Pathway , beta Catenin , Animals , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , beta Catenin/genetics , Osteoblasts/metabolism , Osteogenesis/physiology , Mice , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Protein Transport , Cell Differentiation , Osteocytes/metabolism , Prorenin Receptor
5.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692274

ABSTRACT

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Subject(s)
Bone Morphogenetic Proteins , Cell Differentiation , Primitive Streak , Signal Transduction , Primitive Streak/metabolism , Primitive Streak/embryology , Bone Morphogenetic Proteins/metabolism , Humans , Signal Transduction/physiology , Animals , Mesoderm/metabolism , Mesoderm/embryology , Wnt Signaling Pathway/physiology , Wnt Proteins/metabolism , Gene Expression Regulation, Developmental , Gastrulation/physiology
6.
J Bone Miner Res ; 39(1): 59-72, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38630879

ABSTRACT

Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of ß-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of ß-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.


Subject(s)
Osteogenesis , Periodontitis , Adult , Mice , Humans , Animals , beta Catenin/metabolism , Periodontal Ligament/metabolism , Inflammation , Wnt Signaling Pathway/physiology , Cell Differentiation , Cells, Cultured
7.
Exp Neurol ; 377: 114782, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641126

ABSTRACT

Elevated transport of Caveolin-1 (CAV-1) vesicles within vascular endothelial cells constitutes a significant secondary pathogenic event contributing to the compromise of the blood-brain barrier (BBB) post-traumatic brain injury (TBI). While Wnt/ß-catenin signaling is recognized for its critical involvement in angiogenesis and the maintenance of BBB integrity, its influence on vascular endothelial transcytosis in the aftermath of TBI is not well-defined. This study aims to elucidate the impact of Wnt/ß-catenin signaling on cerebrovascular vesicular transcytosis following TBI. In this experiment, adult male wild-type (WT) C57BL/6 mice underwent various interventions. TBI was induced utilizing the controlled cortical impact technique. Post-TBI, mice were administered either an inhibitor or an agonist of Wnt signaling via intraperitoneal injection. Recombinant adeno-associated virus (rAAV) was administered intracerebroventricularly to modulate the expression of the CAV-1 inhibitory protein, Major facilitator superfamily domain-containing 2a (Mfsd2a). This research utilized Evans blue assay, Western blot analysis, immunofluorescence, transmission electron microscopy, and neurobehavioral assessments. Post-TBI observations revealed substantial increases in macromolecule (Evans blue and albumin) leakage, CAV-1 transport vesicle count, astrocyte end-feet edema, and augmented aquaporin-4 (AQP4) expression, culminating in BBB disruption. The findings indicate that Wnt signaling pathway inhibition escalates CAV-1 transport vesicle activity and aggravates BBB compromise. Conversely, activating this pathway could alleviate BBB damage by curtailing CAV-1 vesicle presence. Post-TBI, there is a diminution in Mfsd2a expression, which is directly influenced by the modulation of WNT signals. Employing a viral approach to regulate Mfsd2a, we established that its down-regulation undermines the protective benefits derived from reducing CAV-1 transport vesicles through WNT signal enhancement. Moreover, we verified that the WNT signaling agonist LiCl notably ameliorates neurological deficits following TBI in mice. Collectively, our data imply that Wnt/ß-catenin signaling presents a potential therapeutic target for safeguarding against BBB damage and enhancing neurological function after TBI.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Caveolin 1 , Mice, Inbred C57BL , Transcytosis , Wnt Signaling Pathway , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Mice , Male , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Transcytosis/drug effects , Transcytosis/physiology , Caveolin 1/metabolism , Symporters
8.
Neuroendocrinology ; 114(6): 589-601, 2024.
Article in English | MEDLINE | ID: mdl-38565081

ABSTRACT

INTRODUCTION: Growth hormone (GH) secreting pituitary adenoma is considered one of the most harmful types of Pituitary Neuroendocrine Tumors (PitNETs). Our previous research has found that high expression of Lysine methyltransferase 5A (KMT5A) is closely related to the proliferation of PitNETs. The aim of this study was to investigate the role and molecular mechanism of KMT5A in the progression of GH PitNETs. METHODS: Immunohistochemistry, qRT-PCR, and Western blot (WB) were used to assess the expression levels of KMT5A in human normal pituitary and GH PitNETs, as well as in rat normal pituitary and GH3 cells. Additionally, we utilized RNA interference technology and treatment with a selective KMT5A inhibitor to decrease the expression of KMT5A in GH3 cells. CCK-8, EdU, flow cytometry (FCM), clone formation, and WB assay were further employed to evaluate the impact of KMT5A on the proliferation of GH3 cells in vitro. A xenograft model was established to evaluate the role of KMT5A in GH PitNETs progression in vivo. RESULTS: KMT5A was highly expressed in GH PitNETs and GH3 cells. Moreover, the reduction of KMT5A expression led to inhibited growth of GH PitNETs and increased apoptosis of tumor cells, as indicated by the findings from CCK-8, EdU, clone formation, and FCM assays. Additionally, WB analysis identified the Wnt/ß-catenin signaling pathway as a potential mechanism through which KMT5A promotes GH PitNETs progression. CONCLUSION: Our research suggests that KMT5A may facilitate the progression of GH PitNETs via the Wnt/ß-catenin signaling pathway. Therefore, KMT5A may serve as a potential therapeutic target and molecular biomarker for GH PitNETs.


Subject(s)
Neuroendocrine Tumors , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/drug effects , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Rats , Disease Progression , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Male , Cell Proliferation/drug effects , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Cell Line, Tumor , Female , Mice , Mice, Nude , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Growth Hormone-Secreting Pituitary Adenoma/pathology , Adenoma/metabolism , Adenoma/pathology , Adult , Middle Aged
9.
J Bone Miner Res ; 39(3): 326-340, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477820

ABSTRACT

Proteasome activator subunit 3 (PA28γ) is a member of the proteasome activator family, which mainly regulates the degradation and stability of proteins. Studies have shown that it plays crucial roles in lipid formation, stemness maintenance, and blood vessel formation. However, few studies have clarified the association between PA28γ and bone diseases. Herein, we identified PA28γ as a previously unknown regulator of bone homeostasis that coordinates bone formation and lipid accumulation. PA28γ-knockout mice presented with the characteristics of low bone mass and accumulation of lipids. Suppressed expression of PA28γ restrained the osteogenic differentiation and enhanced the adipogenic differentiation of bone marrow stromal cells (BMSCs). Overexpression of PA28γ promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. Mechanistically, PA28γ interacted with Wnt5α, and the two interactors appeared to be positively correlated. PA28γ mainly activated the downstream Wnt/ß-catenin signaling pathway, which affects BMSCs differentiation homeostasis. Deletion of Wnt5α significantly delayed the promotion of osteogenic differentiation and partially alleviated the inhibitory effect of adipogenic differentiation of BMSCs in the PA28γ-overexpressing group. Furthermore, we demonstrated that PA28γ-knockout mice had an inhibited rate of bone healing in a drill-hole femoral bone defect model in vivo. Therefore, our results confirm the effects of PA28γ on bone formation and bone defect repair, indicating that PA28γ mainly interacts with Wnt5α to activate the Wnt/ß-catenin signaling pathway regulating BMSCs differentiation homeostasis. Our results reveal the function of PA28γ in bone diseases and provide a new theoretical basis for expanding the treatment of bone diseases.


Subject(s)
Autoantigens , Bone Diseases , Mesenchymal Stem Cells , Mice , Animals , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/pharmacology , Osteogenesis , beta Catenin/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway/physiology , Bone Diseases/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured , Mice, Knockout , Lipids
10.
Exp Eye Res ; 242: 109880, 2024 May.
Article in English | MEDLINE | ID: mdl-38552713

ABSTRACT

Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula. The formation of macular neovascularization (MNV) and subretinal fibrosis of AMD is the most classic cause of the loss of vision in older adults worldwide. While the underlying causes of MNV and subretinal fibrosis remain elusive, the common feature of many common retinal diseases is changes the proportions of protein deposition in extracellular matrix (ECM) when compared to normal tissue. In ECM, fibronectin (FN) is a crucial component and plays a pivotal part not only in fibrotic diseases but also in the process of angiogenesis. The study aims to understand the role of ligand FN and its common integrin receptor α5ß1 on MNV, and to understand the molecular mechanism involved. To study this, the laser-induced MNV mouse model and the rhesus macaque choroid-retinal endothelial cell line (RF/6A) chemical hypoxia mode were established, and the FN-α5ß1 expression levels were detected by immunohistochemistry (IHC) and quantitative real-time PCR analysis (qRT-PCR). Fibronectin expression was silenced using small interfering RNA (siRNA) targeting FN. The tube formation and vitro scratch assays were used to assess the ability to form blood vessels and cell migration. To measure the formation of MNV, immunofluorescence, and Western blot assays were used. These results revealed that the expressions of FN and integrin α5ß1 were distinctly increased in the laser-induced MNV mouse model and in the RF/6A cytochemically induced hypoxia model, and the expression tendency was identical. After the use of FN siRNA, the tube formation and migration abilities of the RF/6A cells were lower, the ability of endothelial cells to proliferate was confined and the scope of damage caused by the laser in animal models was significantly cut down. In addition, FN gene knockdown dramatically inhibited the expression of Wnt/ß-catenin signal. The interaction of FN with the integrin receptor α5ß1 in the constructed model, which may act through the Wnt/ß-catenin signaling pathway, was confirmed in this study. In conclusion, FN may be a potential new molecular target for the prevention and treatment of subretinal fibrosis and MNV.


Subject(s)
Disease Models, Animal , Fibronectins , Integrin alpha5beta1 , Mice, Inbred C57BL , Wnt Signaling Pathway , Animals , Fibronectins/metabolism , Integrin alpha5beta1/metabolism , Integrin alpha5beta1/genetics , Mice , Wnt Signaling Pathway/physiology , Cell Movement/physiology , Blotting, Western , Macaca mulatta , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , beta Catenin/metabolism , Immunohistochemistry , Real-Time Polymerase Chain Reaction , Male , Cells, Cultured
11.
Cells ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38474329

ABSTRACT

Wnt signaling is a highly conserved metazoan pathway that plays a crucial role in cell fate determination and morphogenesis during development. Wnt ligands can induce disparate cellular responses. The exact mechanism behind these different outcomes is not fully understood but may be due to interactions with different receptors on the cell membrane. PTK7/Otk is a transmembrane receptor that is implicated in various developmental and physiological processes including cell polarity, cell migration, and invasion. Here, we examine two roles of Otk-1 and Otk-2 in patterning and neurogenesis. We find that Otk-1 is a positive regulator of signaling and Otk-2 functions as its inhibitor. We propose that PTK7/Otk functions in signaling, cell migration, and polarity contributing to the diversity of cellular responses seen in Wnt-mediated processes.


Subject(s)
Body Patterning , Neurogenesis , Receptor Protein-Tyrosine Kinases , Wnt Signaling Pathway , Animals , Cell Differentiation , Cell Membrane/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway/physiology
12.
Biochem Biophys Res Commun ; 704: 149723, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38430698

ABSTRACT

Subclinical hyperthyroidism is defined biochemically as a low or undetectable thyroid-stimulating hormone (TSH) with normal thyroid hormone levels. Low TSHR signaling is considered to associate with cognitive impairment. However, the underlying molecular mechanism by which TSHR signaling modulates memory is poorly understood. In this study, we found that Tshr-deficient in the hippocampal neurons impairs the learning and memory abilities of mice, accompanying by a decline in the number of newborn neurons. Notably, Tshr ablation in the hippocampus decreases the expression of Wnt5a, thereby inactivating the ß-catenin signaling pathway to reduce the neurogenesis. Conversely, activating of the Wnt/ß-catenin pathway by the agonist SKL2001 results in an increase in hippocampal neurogenesis, resulting in the amelioration in the deficits of memory caused by Tshr deletion. Understanding how TSHR signaling in the hippocampus regulates memory provides insights into subclinical hyperthyroidism affecting cognitive function and will suggest ways to rationally design interventions for neurocognitive disorders.


Subject(s)
Hyperthyroidism , beta Catenin , Mice , Animals , beta Catenin/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Wnt Signaling Pathway/physiology , Receptors, G-Protein-Coupled/metabolism , Hippocampus/metabolism , Neurogenesis/physiology , Hyperthyroidism/metabolism
13.
Brain ; 147(5): 1636-1643, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38306655

ABSTRACT

Respiratory infection with SARS-CoV-2 causes systemic vascular inflammation and cognitive impairment. We sought to identify the underlying mechanisms mediating cerebrovascular dysfunction and inflammation following mild respiratory SARS-CoV-2 infection. To this end, we performed unbiased transcriptional analysis to identify brain endothelial cell signalling pathways dysregulated by mouse adapted SARS-CoV-2 MA10 in aged immunocompetent C57Bl/6 mice in vivo. This analysis revealed significant suppression of Wnt/ß-catenin signalling, a critical regulator of blood-brain barrier (BBB) integrity. We therefore hypothesized that enhancing cerebrovascular Wnt/ß-catenin activity would offer protection against BBB permeability, neuroinflammation, and neurological signs in acute infection. Indeed, we found that delivery of cerebrovascular-targeted, engineered Wnt7a ligands protected BBB integrity, reduced T-cell infiltration of the brain, and reduced microglial activation in SARS-CoV-2 infection. Importantly, this strategy also mitigated SARS-CoV-2 induced deficits in the novel object recognition assay for learning and memory and the pole descent task for bradykinesia. These observations suggest that enhancement of Wnt/ß-catenin signalling or its downstream effectors could be potential interventional strategies for restoring cognitive health following viral infections.


Subject(s)
Blood-Brain Barrier , COVID-19 , Cognitive Dysfunction , Disease Models, Animal , Mice, Inbred C57BL , Wnt Proteins , Animals , Blood-Brain Barrier/metabolism , COVID-19/complications , Mice , Wnt Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Wnt Signaling Pathway/physiology , Ligands , SARS-CoV-2 , Male , Brain/metabolism
14.
Adv Biol (Weinh) ; 8(5): e2300117, 2024 May.
Article in English | MEDLINE | ID: mdl-38379270

ABSTRACT

The incidence of Hepatocellular carcinoma (HCC) and HCC-related deaths have remarkably increased over the recent decades. It has been reported that ß-catenin activation can be frequently observed in HCC cases. This study identified the integrin-linked kinase-associated phosphatase (ILKAP) as a novel ß-catenin-interacting protein. ILKAP is localized both in the nucleus and cytoplasm and regulates the WNT pathway in different ways. First, it is demonstrated that ILKAP activates the WNT pathway in HCC cells by increasing the protein level of ß-catenin and other proteins associated with the WNT signaling, such as c-Myc and CyclinD1. Next, it is shown that ILKAP promotes the metastasis of HCC both in vitro and in vivo in a zebrafish xenograft model. It is also found that ILKAP dephosphorylates the GSK3ß and CK1, contributing to the reduced ubiquitination of ß-catenin. Furthermore, it is identified that ILKAP functions by mediating binding between TCF4 and ß-catenin to enhance expression of WNT target genes. Taken together, the study demonstrates a critical function of ILKAP in metastasis of HCC, since ILKAP is crucial for the activation of the WNT pathway via stabilization of ß-catenin and increased binding between TCF4 and ß-catenin.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phosphoprotein Phosphatases , Wnt Signaling Pathway , beta Catenin , Animals , Humans , beta Catenin/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Neoplasm Metastasis , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Wnt Signaling Pathway/physiology , Zebrafish , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
15.
Aesthetic Plast Surg ; 48(9): 1817-1824, 2024 May.
Article in English | MEDLINE | ID: mdl-38409345

ABSTRACT

BACKGROUND: In plastic surgery, autologous fat grafts (AFG) play an important role because of their abundant supply, biocompatibility, and low rejection rate. However, the lower retention rate of fat grafts limits their widespread use. Brown adipose tissue (BAT) can promote angiogenesis and regulate the level of associated inflammation. This study explored whether BAT has a facilitative effect on fat graft retention. METHODS: We obtained white adipose tissue (WAT) from c57 mice and combined it with either BAT from c57 mice or phosphate-buffered saline (PBS) as a control. These mixtures were injected subcutaneously into the back of thymus-free nude mice. After 12 weeks, fat grafts were harvested, weighed, and analyzed. RESULTS: We found that the BAT-grafted group had higher mass retention, more mature adipocytes, and higher vascularity than the other group. Further analysis revealed that BAT inhibited M1 macrophages; down-regulated IL-6, IL-1ß, and TNF-ß; upregulated M2 macrophages and Vascular endothelial growth factor-A (VEGFA); and promoted adipocyte regeneration by inhibiting the Wnt/ß-catenin pathway, which together promoted adipose graft retention. CONCLUSION: The study demonstrated that BAT improved adipose graft retention by promoting angiogenesis, inhibiting tissue inflammation levels and the Wnt/ß-catenin pathway. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Subject(s)
Adipose Tissue, Brown , Graft Survival , Mice, Inbred C57BL , Mice, Nude , Wnt Signaling Pathway , Animals , Adipose Tissue, Brown/transplantation , Mice , Wnt Signaling Pathway/physiology , Transplantation, Autologous , Random Allocation , Male , Adipose Tissue, White/transplantation , Adipose Tissue, White/metabolism , Disease Models, Animal
16.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 194-199, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372093

ABSTRACT

The goals of this study were to investigate whether Wnt/ß-catenin signaling plays a role in hypo-osmolality-related degeneration of nucleus pulposus (NP) cells, and if so, to define the mechanism underlying AQP1 in this effect. Human NP cells were cultured under hypo-osmotic (300/350/400 mOsm) and iso-osmotic (450 mOsm) conditions. The cell viability, AQP1, the expression of Wnt/ß-catenin signaling, collagen II/I, and MMP3/9 were evaluated. To determine the effects of the Wnt/ß-catenin signaling, we used the inhibitor and the activator of Wnt during the hypo-osmotic culture of NP cells. We also examined whether the silencing and overexpressing of the AQP1 gene would affect the Wnt/ß-catenin expression in NP cells. Hypo-osmolality caused NP cell degeneration and activated the Wnt/ß-catenin signaling but suppressed the AQP1 level. Inhibiting the Wnt/ß-catenin signaling alleviated the hypo-osmolality-induced NP cell degeneration. On the contrary, activating Wnt/ß-catenin aggravated the NP cell degeneration under hypo-osmotic conditions, which did not affect AQP1 expression. AQP1-overexpressed NP cells exhibited decreased Wnt/ß-catenin signaling and alleviated cell degeneration under the hypo-osmotic condition. Besides, AQP1 silencing accelerated NP cell degeneration and activated Wnt/ß-catenin expression compared with untreated control. Hypo-osmolality promotes NP cell degeneration via activating Wnt/ß-catenin signaling, which is suppressed by AQP1 expression. The upregulation of AQP1 suppressed the Wnt/ß-catenin signaling and alleviated the hypo-osmolality induced by the NP cell degeneration.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cells, Cultured , Wnt Signaling Pathway/physiology , Aquaporin 1/genetics , Aquaporin 1/metabolism
17.
FASEB J ; 38(4): e23479, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38345813

ABSTRACT

Accumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/ß-catenin signaling, which is the crucial driver of renal fibrosis in HTN. First, we identified that the expression of GPR97 correlated with the ß-catenin expression in renal biopsy from patients with HTN. Moreover, we found that GPR97 deficiency inhibited Wnt/ß-catenin signaling in mice with HTN, as evidenced by the reduction of ß-catenin expression and downstream target proteins, including MMP7 and Fibronectin. Mechanistically, we found that GPR97 could directly bind with Wnt1 in cultured tubular cells and TGF-ß1 treatment enhanced the binding ability of GPR97 and Wnt1. In addition, the gene silencing of GPR97 could decrease the Wnt1-induced fibrotic phenotype of tubular cells and inflammatory responses, suggesting that the binding of GPR97 and Wnt1 promoted Wnt/ß-catenin signaling. Collectively, our studies reveal that GPR97 is a regulator of Wnt/ß-catenin signaling in HTN, and targeting GPR97 may be a novel therapeutic strategy for HTN treatment.


Subject(s)
Hypertension, Renal , Nephritis , Receptors, G-Protein-Coupled , beta Catenin , Animals , Humans , Mice , beta Catenin/metabolism , Fibrosis , Wnt Signaling Pathway/physiology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics
18.
Eur J Pharmacol ; 966: 176375, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38307381

ABSTRACT

The role of the Wnt/ß-catenin signaling pathway in epilepsy and the effects of its modulators as efficacious treatment options, though postulated, has not been sufficiently investigated. We evaluated the involvement of ß-catenin and GSK-3ß, the significant proteins in this pathway, in the lithium chloride-pilocarpine-induced status epilepticus model in rodents to study acute phase of temporal lobe epilepsy (TLE). The modulators studied were 6-BIO, a GSK-3ß inhibitor and Sulindac, a Dvl protein inhibitor. The disease group exhibited increased seizure score and seizure frequency, and the assessment of neurobehavioral parameters indicated notable alterations. Furthermore, histopathological examination of hippocampal brain tissues revealed significant neurodegeneration. Immunohistochemical study of hippocampus revealed neurogenesis in 6-BIO and sulindac groups. The gene and protein expression by RT-qPCR and western blotting studies indicated Wnt/ß-catenin pathway downregulation and increased apoptosis in the acute phase of TLE. 6-BIO was very efficient in upregulating the Wnt pathway, decreasing neuronal damage, increasing neurogenesis in hippocampus and decreasing seizure score and frequency in comparison to sulindac. This suggests that both GSK-3ß and ß-catenin are potential and novel drug targets for acute phase of TLE, and treatment options targeting these proteins could be beneficial in successfully managing acute epilepsy. Further evaluation of 6-BIO to explore its therapeutic potential in other models of epilepsy should be conducted.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Rats , Animals , Pilocarpine , Wnt Signaling Pathway/physiology , Lithium/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Sulindac/adverse effects , Sulindac/metabolism , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy
19.
FASEB J ; 38(4): e23463, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38334393

ABSTRACT

With self-renewal and pluripotency features, embryonic stem cells (ESCs) provide an invaluable tool to investigate early cell fate decisions. Pluripotency exit and lineage commitment depend on precise regulation of gene expression that requires coordination between transcription (TF) and chromatin factors in response to various signaling pathways. SET domain-containing 3 (SETD3) is a methyltransferase that can modify histones in the nucleus and actin in the cytoplasm. Through an shRNA screen, we previously identified SETD3 as an important factor in the meso/endodermal lineage commitment of mouse ESCs (mESC). In this study, we identified SETD3-dependent transcriptomic changes during endoderm differentiation of mESCs using time-course RNA-seq analysis. We found that SETD3 is involved in the timely activation of the endoderm-related gene network. The canonical Wnt signaling pathway was one of the markedly altered signaling pathways in the absence of SETD3. The assessment of Wnt transcriptional activity revealed a significant reduction in Setd3-deleted (setd3∆) mESCs coincident with a decrease in the nuclear pool of the key TF ß-catenin level, though no change was observed in its mRNA or total protein level. Furthermore, a proximity ligation assay (PLA) found an interaction between SETD3 and ß-catenin. We were able to rescue the differentiation defect by stably re-expressing SETD3 or activating the canonical Wnt signaling pathway by changing mESC culture conditions. Our results suggest that alterations in the canonical Wnt pathway activity and subcellular localization of ß-catenin might contribute to the endoderm differentiation defect of setd3∆ mESCs.


Subject(s)
Mouse Embryonic Stem Cells , beta Catenin , Animals , Mice , beta Catenin/metabolism , Cell Differentiation/genetics , Endoderm , Wnt Signaling Pathway/physiology
20.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178152

ABSTRACT

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Subject(s)
Dopamine , Myasthenia Gravis , Humans , Rats , Animals , Dopamine/metabolism , Endothelial Cells/metabolism , Brain , Blood-Brain Barrier/metabolism , Wnt Signaling Pathway/physiology , Myasthenia Gravis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...