Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res Bull ; 181: 109-120, 2022 04.
Article in English | MEDLINE | ID: mdl-35093471

ABSTRACT

Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet ß-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase Ⅳ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3ß). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic ß-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.


Subject(s)
Benzhydryl Compounds/pharmacology , Cognitive Dysfunction/drug therapy , Cyclic AMP Response Element-Binding Protein/drug effects , Diabetes Complications/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/drug therapy , Glucosides/pharmacology , Glycogen Synthase Kinase 3 beta/drug effects , Memory Disorders/drug therapy , Neuroprotective Agents/pharmacology , Wnt3 Protein/drug effects , Animals , Behavior, Animal/drug effects , Cognitive Dysfunction/etiology , Diabetes Complications/etiology , Diabetes Mellitus, Experimental/chemically induced , Diabetic Neuropathies/etiology , Memory Disorders/etiology , Rats , Signal Transduction/drug effects
2.
Transl Psychiatry ; 6(9): e892, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27622936

ABSTRACT

Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/ß-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant.


Subject(s)
Behavior, Animal , Depression/genetics , Hippocampus/metabolism , Stress, Psychological/genetics , Wnt2 Protein/genetics , Wnt3 Protein/genetics , Animals , Antidepressive Agents, Second-Generation/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/metabolism , Fluoxetine/pharmacology , Gene Knockdown Techniques , Hippocampus/drug effects , Male , Mice , Neurogenesis/genetics , Restraint, Physical , Stress, Psychological/metabolism , Wnt Signaling Pathway , Wnt2 Protein/drug effects , Wnt2 Protein/metabolism , Wnt3 Protein/drug effects , Wnt3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...