Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109.975
Filter
1.
J Vasc Nurs ; 42(2): 83-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823976

ABSTRACT

INTRODUCTION: An evidence-based approach is essential in the treatment of wounds to optimise healing, reduce costs and improve patient outcomes. AIM: This case study aimed to demonstrate our model of care, which assesses and manages patients with venous disease and complex wounds. In this case, venous leg ulcer (VLU) was treated with TLC-NOSF dressing and therapeutic compression. The wound was serially assessed using a smart App that gave the patient a graphic representation of their progress. DESIGN: Descriptive Observational Case Study. CLINICAL CARE: An evidence-based approach for managing a chronic, severe VLU. The patient was initially seen at the Outpatient Vascular Wound Clinic twice weekly, then every two weeks for conservative sharp wound debridement, skin care, dressing change, and compression therapy using a compression (Ready) wrap. Wound progress was monitored by the digital application 'Tissue Analytics', a "purposedesigned digital wound management platform that records, tracks, and analyses wounds". RESULTS: Week 1: On initial review, ulcer length was 3.15cm, width was 3.1 cm, and total surface area was 6.31 cm2. The wound base was mildly sloughy (<25%), with areas of good granulation tissue on view. Week 12: Length was 1.32 cm, width 1.50 cm, and total surface area of 1.45 cm2, a 77% reduction in wound size. Week 24: The length was 0.48 cm, the width was 0.64 cm, and the total surface area was 0.18 cm2. This represented a 97% reduction in wound size. Week 36: Length was 0.01 cm, the width 0.06 cm, with a total surface area of 0.00 cm2. This represented a 99.99% reduction in wound size. CONCLUSION: The patient's treatment for a complex venous leg ulcer included the application of TLC-NOSF dressing in combination with individualised therapeutic compression therapy. We found TLC-NOSF was very effective in combination with the best standard of VLU care (i.e. therapeutic graduated compression therapy). The clinician and patient were impressed with the healing rate at 12 weeks, as the wound dimensions were the lowest since the wound started six years ago. This dramatically improved patient concordance and engagement in care. Despite incomplete healing at 36 weeks, the wound-healing journey over the 36 weeks indicated wound closure was close. In addition, using a wound assessment App, the patient could immediately see the benefits of the new treatment, facilitating patient compliance with the treatment.


Subject(s)
Varicose Ulcer , Wound Healing , Humans , Varicose Ulcer/therapy , Compression Bandages , Debridement/methods , Male , Female , Skin Care/nursing , Skin Care/methods , Aged , Bandages
2.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
3.
Carbohydr Polym ; 339: 122209, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823899

ABSTRACT

The escalating global health concern arises from chronic wounds induced by bacterial infections, posing a significant threat to individuals. Consequently, an imperative exist for the development of hydrogel dressings to facilitate prompt wound monitoring and efficacious wound management. To this end, pH-sensitive bromothymol blue (BTB) and pH-responsive drug tetracycline hydrochloride (TH) were introduced into the polysaccharide-based hydrogel to realize the integration of wound monitoring and controlled treatment. Polysaccharide-based hydrogels were formed via a Schiff base reaction by cross-linking carboxymethyl chitosan (CMCS) on an oxidized sodium alginate (OSA) skeleton. BTB was used as a pH indicator to monitor wound infection through visual color changes visually. TH could be dynamically released through the pH response of the Schiff base bond to provide effective treatment and long-term antibacterial activity for chronically infected wounds. In addition, introducing polylactic acid nanofibers (PLA) enhanced the mechanical properties of hydrogels. The multifunctional hydrogel has excellent mechanical, self-healing, injectable, antibacterial properties and biocompatibility. Furthermore, the multifaceted hydrogel dressing under consideration exhibits noteworthy capabilities in fostering the healing process of chronically infected wounds. Consequently, the research contributes novel perspectives towards the advancement of intelligent and expeditious bacterial infection monitoring and dynamic treatment platforms.


Subject(s)
Alginates , Anti-Bacterial Agents , Bandages , Chitosan , Hydrogels , Nanofibers , Wound Healing , Nanofibers/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hydrogen-Ion Concentration , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Alginates/chemistry , Animals , Staphylococcus aureus/drug effects , Tetracycline/chemistry , Tetracycline/pharmacology , Mice , Wound Infection/drug therapy , Polysaccharides/chemistry , Escherichia coli/drug effects , Schiff Bases/chemistry , Microbial Sensitivity Tests , Humans
4.
Br J Community Nurs ; 29(Sup6): S40-S42, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38814844

ABSTRACT

Mr B had lost his wife of 65 years and was distraught, but he tried to move on with life. However, while playing football he injured his leg, which then developed into a venous ulcer that was to last for many years. Unfortunately, his care was inconsistent, and the wound was not progressing. He found the local Leg Club and decided to self-refer. He not only went on to achieve wound closure rapidly, but he found a social atmosphere in the club, made friends and learned how to prevent the wound from recurring. He felt that consistency of care was the reason for the rapid progress.


Subject(s)
Wound Healing , Humans , Male , Leg Ulcer/therapy , Varicose Ulcer/therapy , Varicose Ulcer/nursing , Aged
5.
Br J Community Nurs ; 29(Sup6): S8-S14, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38814846

ABSTRACT

Previous studies have reported that polyhexamethylene biguanide (PHMB) and betaine solution and gels remove biofilm, improve wound healing and reduce infection rates. Quality of life (QoL) outcomes are not commonly reported on when it comes to wound care. This review aims to summarise QoL data from a cohort of case studies previously published on chronic lower limb ulcers using PHMB products (Prontosan® Solution, Prontosan® Wound Gel X and Prontosan® Debridement Pad). Here, we report on and review a total of 38 case studies describing 56 wounds. From these 38 case studies, 36 reported that all the wounds involved had either healed or improved by the end of their respective study period. QoL themes explore malodour, slough, and exudate, pain, mobility, hair growth, antibiotic intake, return to work, social life and mood. This case series demonstrates that treatment with Prontosan® products improves many QoL outcomes for patients with non-healing wounds.


Subject(s)
Biguanides , Quality of Life , Wound Healing , Humans , United Kingdom , Biguanides/therapeutic use , Leg Ulcer , Betaine/therapeutic use , Male , Debridement , Female , Aged , Anti-Infective Agents, Local/therapeutic use , Middle Aged
7.
Med Sci Monit ; 30: e942485, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814863

ABSTRACT

BACKGROUND The healing of bone defects is a serious challenge worldwide. One branch of dentistry deals with bone defects. Capsaicin has anti-inflammatory, anti-oxidative, and cholesterol-reducing effects. The aim of this study was to evaluate the effects of systemic capsaicin administered at different doses on bone healing. MATERIAL AND METHODS A total of 32 male wistar rats was used, their weight varying between 250 and 300 g. The rats were randomly divided into 4 groups of 8 rats each. The analyses served to evaluate the effect on healing of different doses of capsaicin and grafts. A significant increase was observed in the number of osteoblasts in the capsaicin-applied groups, compared with the control group. RESULTS The analyses served to evaluate the effect on healing of different doses of capsaicin and grafts. A significant increase was observed in the number of osteoblasts in the capsaicin-applied groups, compared with that of the control group. The inflammation scores showed a significant difference only in the control group and in the group administered with 50 mg/kg capsaicin (P=0.010). The osteoclast counts were significantly different between all groups. CONCLUSIONS As a result of the analyses, positive effects on bone healing were observed when capsaicin 0.25 mg/kg and 0.50 mg/kg was administered intraperitoneally. However, more studies are needed for more accurate information.


Subject(s)
Capsaicin , Osteoblasts , Rats, Wistar , Animals , Capsaicin/pharmacology , Male , Rats , Osteoblasts/drug effects , Osteoblasts/metabolism , Wound Healing/drug effects , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone and Bones/drug effects , Bone Regeneration/drug effects
8.
Narra J ; 4(1): e621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798873

ABSTRACT

Second-degree burn, the most common among burn degrees, underscores the importance of timely and proper treatment in influencing prognosis. Nutmeg (Myristica fragrans), renowned for its potent antibacterial and antifungal properties, also serves as an effective antiseptic for open wounds. The aim of this study was to identify the phytochemical constituents of nutmeg essential oil and analyze the wound healing effect of nutmeg cream on second-degree burns in an animal model. An experimental study with a completed randomized design was conducted on Rattus norvegicus strain Wistar rats with second-degree burn. This study had four groups and each group consisting of four rats: B (burn-treated base cream), B+N (burn-treated 3% nutmeg cream), B+SSD (burn-treated silver sulfadiazine (BSS)), and B+N+SSD (burn-treated 3% nutmeg cream and SSD in a 1:1 ratio). The phytochemical analysis of nutmeg essential oil was conducted by gas chromatography and mass spectroscopy (GC-MS). The burn diameter and burn wound healing percentage were measured from day 0 to 18. One-way ANOVA followed by post hoc analysis using the least significant difference (LSD) was employed to analysis the effect. The phytochemical analysis of nutmeg essential oil found that myristicin, terpinene-4-ol, terpinene, safrole and terpinolene were the most abundant putative compounds in nutmeg essential oil. On day 0, the average burn wound diameters were 1.4 cm in all groups and increases were observed in all groups on day 3. The wound diameter decreased until day 18 with the smallest burn wound diameter was found in the B+N group (0.86±0.37 cm), followed by B+SSD (0.93±0.29 cm). The B+SSD group exhibited the highest percentage of burn wound healing (56.80±14.05%), which was significantly different from the base cream (p<0.05). The percentage of burn wound healing in rats given 3% nutmeg cream was 41.88±13.81%, suggesting that nutmeg cream could promote burn wound healing in rats induced by second-degree burns.


Subject(s)
Burns , Disease Models, Animal , Myristica , Rats, Wistar , Wound Healing , Animals , Myristica/chemistry , Wound Healing/drug effects , Burns/drug therapy , Burns/pathology , Rats , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Skin Cream , Male , Gas Chromatography-Mass Spectrometry , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Silver Sulfadiazine/therapeutic use
9.
Clin Sports Med ; 43(3): 501-512, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811124

ABSTRACT

Surgical intervention after anterior cruciate ligament (ACL) tears is typically required because of the limited healing capacity of the ACL. However, mechanical factors and the inflammatory response triggered by the injury and surgery can impact patient outcomes. This review explores key aspects of ACL injury and reconstruction biology, including the inflammatory response, limited spontaneous healing, secondary inflammation after reconstruction, and graft healing processes. Understanding these biologic mechanisms is crucial for developing new treatment strategies and enhancing patient well-being. By shedding light on these aspects, clinicians and researchers can work toward improving quality of life for individuals affected by ACL tears.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Wound Healing , Humans , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Wound Healing/physiology , Inflammation , Quality of Life
10.
Lasers Med Sci ; 39(1): 141, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801600

ABSTRACT

PURPOSE: Conventional approaches for enhancing wound healing may not always yield satisfactory results. Instead, we test the effectiveness of a newly developed photodynamic therapy (PDT) that uses methylene blue (MB) loaded with polyethylene glycol (PEG) (MB-PEG) hydrogel to accelerate wound healing process in mice. METHODS: A dorsal skin incision with 6 mm punch which topically subjected to MB-PEG hydrogel and a low-level laser light of red light to assess the regeneration process of wounded skin. A total of 63 adult male CD1 mice divided into normal group (no treatment) and other wound groups received different treatments of laser (650 ± 5 nm and power intensity of 180 mW/cm2), MB-PEG, or PDT (MB-PEG followed by laser). The wound healing parameters were investigated by histological examination of the skin and measuring of proinflammatory cytokines at the early stage (48 h) and a late one on day 21. RESULTS: at 48 h, the score of tissue granulation, inflammation, and angiogenesis process were markedly improved in wounded groups that received MB + PEG combined with laser compared to the group treated with laser alone. On day 21, a significant improvement of the inflammation was detected in the group treated with MB + PEG plus laser compared to the other groups. At 48 h, the upregulated serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in the wound group were significantly (P < 0.001) reduced in the group treated with MB + PEG combined with laser. CONCLUSION: MB-PEG based hydrogel improves and accelerates wound closure in the context of laser compared to either single treatment.


Subject(s)
Methylene Blue , Photochemotherapy , Polyethylene Glycols , Skin , Wound Healing , Animals , Wound Healing/drug effects , Wound Healing/radiation effects , Mice , Photochemotherapy/methods , Methylene Blue/pharmacology , Male , Skin/radiation effects , Skin/drug effects , Skin/injuries , Hydrogels , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Cytokines/metabolism
11.
Sci Rep ; 14(1): 12459, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816428

ABSTRACT

The aim was clinical evaluation of the efficacy of topical insulin eye drops in patients with refractory persistent epithelial defects (PEDs). This prospective non-randomized investigation was conducted to examine the efficacy of insulin eye drops in treating patients with PEDs that did not respond to conventional therapy. A total of twenty-three patients were included in the study, and they were administered insulin eye drops formulated as 1 U/mL, four times a day. The rate of epithelial defect resolution and time to complete corneal re-epithelialization were considered primary outcome measures. The relative prognostic impact of initial wound size and other parameters, including age, sex, smoking, diabetes, and hypertension were also analyzed. The results showed that during follow-up (maximum 50 days), a total of 16 patients (69.6%) achieved improvement. Insulin eye drops significantly reduced the corneal wounding area in 75% of patients with small epithelial defects (5.5 mm2 or less) during 20 days. Only 61% of patients with moderate epithelial defects (5.51-16 mm2) showed a significant recovery in 20-30 days. Also, 71% of patients with a defect size greater than 16 mm2, demonstrated a significant improvement in the rate of corneal epithelial wound healing in about 50 days. In conclusion topical insulin reduces the PED area and accelerates the ocular surface epithelium wound healing.


Subject(s)
Epithelium, Corneal , Insulin , Ophthalmic Solutions , Humans , Male , Female , Middle Aged , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Insulin/administration & dosage , Aged , Ophthalmic Solutions/administration & dosage , Prospective Studies , Adult , Wound Healing/drug effects , Administration, Topical , Corneal Diseases/drug therapy , Corneal Diseases/pathology , Treatment Outcome , Re-Epithelialization/drug effects
12.
Sci Adv ; 10(22): eadn0260, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820150

ABSTRACT

Biodegradable piezoelectric devices hold great promise in on-demand transient bioelectronics. Existing piezoelectric biomaterials, however, remain obstacles to the development of such devices due to difficulties in large-scale crystal orientation alignment and weak piezoelectricity. Here, we present a strategy for the synthesis of optimally orientated, self-aligned piezoelectric γ-glycine/polyvinyl alcohol (γ-glycine/PVA) films via an ultrasound-assisted process, guided by density functional theory. The first-principles calculations reveal that the negative piezoelectric effect of γ-glycine originates from the stretching and compression of glycine molecules induced by hydrogen bonding interactions. The synthetic γ-glycine/PVA films exhibit a piezoelectricity of 10.4 picocoulombs per newton and an ultrahigh piezoelectric voltage coefficient of 324 × 10-3 volt meters per newton. The biofilms are further developed into flexible, bioresorbable, wireless piezo-ultrasound electrotherapy devices, which are demonstrated to shorten wound healing by ~40% and self-degrade in preclinical wound models. These encouraging results offer reliable approaches for engineering piezoelectric biofilms and developing transient bioelectronics.


Subject(s)
Biofilms , Polyvinyl Alcohol , Wireless Technology , Polyvinyl Alcohol/chemistry , Animals , Glycine/chemistry , Wound Healing , Biocompatible Materials/chemistry , Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods
14.
BMJ Open ; 14(5): e085969, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821568

ABSTRACT

INTRODUCTION: Chronic wound care remains a critical public health challenge in terms of prevalence, quality of life and healthcare costs on a global scale. Currently used methods to assess the size and content of wounds include direct contact techniques based on double-layer film, ruler measurements, digital photography and visual examination. Nowadays, despite these evaluations, close monitoring and tracking of these chronic wounds remain a great challenge. The use of telemonitoring through digital measurement tools may offer a potential means of improving healing management processes. Many studies have evaluated the size and content of the wound through digital devices such as mobile phones and computers. However, the clinical accuracy of these tools remains to be clarified. The objective of this systematic review is to assess and consolidate the current state-of-the-art digital devices for both quantitative (length, width, surface area, perimeter, volume and depth) and qualitative (granulation, fibrin, necrosis and slough) indicators of wound care. METHODS AND ANALYSIS: We will include studies using digital measurement methods from databases such as EBSCO, Cochrane Library, MEDLINE, Web of Science and EMBASE, limited to French and English publications until November 15, 2023. Following the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines, selection involves two independent reviewers conducting title and abstract screenings, study selections, data extractions and risk-of-bias assessments using QUADAS-2. Discrepancies will be resolved through discussion or a third reviewer. ETHICS AND DISSEMINATION: Primary data will not be collected in this study; thus, ethical approval will not be required. The study's findings will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42023396642.


Subject(s)
Systematic Reviews as Topic , Wound Healing , Humans , Research Design , Photography , Wounds and Injuries/therapy
15.
Biosens Bioelectron ; 259: 116365, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759309

ABSTRACT

Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Sutures , Wound Healing , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Humans , Glucose Oxidase/chemistry , Equipment Design , Bioelectric Energy Sources , Blood Glucose/analysis , Animals , Glucose/analysis , Glucose/isolation & purification , Carbon Fiber/chemistry
16.
Platelets ; 35(1): 2347331, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38722091

ABSTRACT

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Subject(s)
Cryopreservation , Platelet-Rich Plasma , Wound Healing , Platelet-Rich Plasma/metabolism , Humans , Cryopreservation/methods , Cell Proliferation , Cell Movement , Fibroblasts/metabolism
17.
J Drugs Dermatol ; 23(5): 360-365, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709707

ABSTRACT

BACKGROUND: The use of ointments can be beneficial for dry, chapped, or cracked skin and also for supporting wound healing. We describe the results of 2 studies with an over-the-counter healing ointment (HO) to evaluate the effects on skin hydration and in the setting of wound healing after dermatologic procedures.  Methods: Study 1 was a single-center, in-use study using HO on qualified areas at least once daily for 4 weeks in subjects with dry, cracked body skin and self-perceived sensitive skin. Study 2 was a multi-center study of wound healing in subjects using HO on a daily basis after having dermatologic surgical procedures.  Results: In Study 1, there was a significant reduction in skin dryness after 1 and 4 weeks of HO use (P<0.05). Image analysis of the skin revealed a significant increase in skin smoothness after the first application of HO in 100% of subjects (P<0.05). Tolerability and safety were excellent, and HO was well-perceived by subjects throughout the study. In Study 2, HO improved clinical assessments at all time points compared with baseline with a decrease in erythema, edema, scabbing/crusting, and an improvement in overall wound appearance (P<0.05). There was no worsening or significant increase in measures for tolerability parameters at any study visits. Additionally, HO achieved a favorable perception by study subjects.  Conclusions: HO has a well-established safety profile and has been shown to improve both skin hydration and the overall wound healing process after dermatologic surgical procedures. J Drugs Dermatol. 2024;23(5):360-365. doi:10.36849/JDD.8224.


Subject(s)
Nonprescription Drugs , Ointments , Wound Healing , Humans , Wound Healing/drug effects , Female , Male , Middle Aged , Adult , Nonprescription Drugs/administration & dosage , Aged , Treatment Outcome , Skin Diseases/drug therapy , Skin/drug effects , Skin/pathology , Dermatologic Surgical Procedures/adverse effects , Young Adult , Administration, Cutaneous
18.
Carbohydr Polym ; 337: 122135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710549

ABSTRACT

The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.


Subject(s)
Chitosan , Hemostatics , Hydrogels , Polylysine , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Polylysine/chemistry , Polylysine/pharmacology , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Rats
19.
Carbohydr Polym ; 337: 122147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710554

ABSTRACT

Treatment of infected wound by simultaneously eliminating bacteria and inducing angiogenesis to promote wound tissue regeneration remains a clinical challenge. Dynamic and reversable hydrogels can adapt to irregular wound beds, which have raised great attention as wound dressings. Herein, a sprayable chitosan-based hydrogel (HPC/CCS/ODex-IGF1) was developed using hydroxypropyl chitosan (HPC), caffeic acid functionalized chitosan (CCS), oxidized dextran (ODex) to crosslink through the dynamic imine bond, which was pH-responsive to the acidic microenvironment and could controllably release insulin growth factor-1 (IGF1). The HPC/CCS/ODex-IGF1 hydrogels not only showed self-healing, self-adaptable and sprayable properties, but also exhibited excellent antibacterial ability, antioxidant property, low-cytotoxicity and angiogenetic activity. In vivo experiments demonstrated that hydrogels promoted tissue regeneration and healing of bacteria-infected wound with a rate of approximately 98.4 % on day 11 by eliminating bacteria, reducing inflammatory and facilitating angiogenesis, demonstrating its great potential for wound dressing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Neovascularization, Physiologic , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Neovascularization, Physiologic/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Humans , Male , Insulin-Like Growth Factor I , Staphylococcus aureus/drug effects , Bandages , Wound Infection/drug therapy , Wound Infection/microbiology , Dextrans/chemistry , Dextrans/pharmacology , Angiogenesis
20.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771877

ABSTRACT

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Subject(s)
Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...