Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.596
Filter
1.
Carbohydr Polym ; 337: 122147, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710554

ABSTRACT

Treatment of infected wound by simultaneously eliminating bacteria and inducing angiogenesis to promote wound tissue regeneration remains a clinical challenge. Dynamic and reversable hydrogels can adapt to irregular wound beds, which have raised great attention as wound dressings. Herein, a sprayable chitosan-based hydrogel (HPC/CCS/ODex-IGF1) was developed using hydroxypropyl chitosan (HPC), caffeic acid functionalized chitosan (CCS), oxidized dextran (ODex) to crosslink through the dynamic imine bond, which was pH-responsive to the acidic microenvironment and could controllably release insulin growth factor-1 (IGF1). The HPC/CCS/ODex-IGF1 hydrogels not only showed self-healing, self-adaptable and sprayable properties, but also exhibited excellent antibacterial ability, antioxidant property, low-cytotoxicity and angiogenetic activity. In vivo experiments demonstrated that hydrogels promoted tissue regeneration and healing of bacteria-infected wound with a rate of approximately 98.4 % on day 11 by eliminating bacteria, reducing inflammatory and facilitating angiogenesis, demonstrating its great potential for wound dressing.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Neovascularization, Physiologic , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Neovascularization, Physiologic/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Humans , Male , Insulin-Like Growth Factor I , Staphylococcus aureus/drug effects , Bandages , Wound Infection/drug therapy , Wound Infection/microbiology , Dextrans/chemistry , Dextrans/pharmacology , Angiogenesis
2.
PLoS One ; 19(5): e0304491, 2024.
Article in English | MEDLINE | ID: mdl-38805522

ABSTRACT

Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.


Subject(s)
Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Staphylococcus aureus , Wound Infection , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/pathogenicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Humans , Virulence/drug effects , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy
3.
PLoS One ; 19(5): e0301201, 2024.
Article in English | MEDLINE | ID: mdl-38743750

ABSTRACT

With the rise of AMR the management of wound infections are becoming a big challenge. This has been attributed to the fact that most wound bacterial isolates have been found to possess various virulence factors like enzymes, toxins & biofilms production. Therefore, need for discovery of new lead compounds is paramount as such factors make these microbes to be resistant to already existing arsenal of antibiotics or even the immune system. This study aimed at documenting the nutritional, physicochemical, phytochemical and antibacterial properties of stingless bee honey. Isolation and characterization of bacterial isolates from 34 samples obtained from wounds of outpatients and surgical wards of Nakuru County Referral Hospital, Kenya was done. Various bacterial isolates (43) were isolated Staphylococcus aureus (34.8%) being predominant, followed by Pseudomonas aeruginosa (27.9%), Klebsiella pneumoniae (23.3%) and Escherichia coli (14.0%). A total of 36 out of the total isolates were genotypically characterized using molecular techniques detecting the prevalence of the following virulence genes; 16 srRNA (756 bp), hla (229 bp), cnf1 (426 bp), cnf2 (543 bp), hlyA (1011 bp), rmpA (461 bp), lasL (600 bp), gyrB (411 bp), khe (77 bp) and magA (128 bp). An assessment of the in vitro antibacterial activity of 26 stingless bee honey samples collected from their cerumen egg-shaped pots in Marigat sub-County, Baringo County, Kenya was done. Antibacterial properties of the stingless bee honey was done with varying susceptibility patterns being observed at different concentrations of honey impregnated discs (10x104, 20x104, 50x104 and 75x104 ml µg/ ml) giving mean inhibition diameters of 18.23 ± 0.4 mm (Staphylococcus aureus), 17.49 ± 0.3 mm (Pseudomonas aeruginosa), 16.05 ± 0.6 mm (Klebsiella pneumoniae) and 10.19 ± 0.5 mm (Escherichia coli) with a mean range of 14.54 ± 2.0 mm to 17.58 ± 3 mm. Higher susceptibility to honey was recorded across all the bacterial isolates compared to conventional antibiotics while the mean MIC and MBC of the honey were recorded at 62.5 ml µg/ ml and 250 ml µg/ ml respectively. Control bacterial isolates Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 27736 and Pseudomonas aeruginosa ATCC 27858 were used in the analysis. The stingless bee honey was found to be rich in various nutritive components like sugar (89.85 ± 5.07 g/100 g) and moisture (81.75 ± 10.35 mg/g) with a significant difference of P <0.05 as the main antibacterial components. Additionally, the stingless honey did possess water soluble vitamins, proteins and minerals of which potassium was the most dominant one. In regard to phytochemicals, on our preliminary analysis phenolic, flavonoid and carotenoid compounds were found to be present with phenolic compounds being the most dominant one. Stingless bee honey from Marigat, has antimicrobial properties which could be attributed to the rich phytochemicals it possesses and its physicochemical properties in addition to its high nutritive value.


Subject(s)
Anti-Bacterial Agents , Honey , Microbial Sensitivity Tests , Honey/analysis , Anti-Bacterial Agents/pharmacology , Animals , Bees/microbiology , Humans , Bacteria/drug effects , Bacteria/isolation & purification , Phytochemicals/pharmacology , Wound Infection/microbiology , Wound Infection/prevention & control , Wound Infection/drug therapy , Virulence Factors
4.
AAPS PharmSciTech ; 25(5): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740721

ABSTRACT

Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Hydrogels , Microspheres , Pseudomonas aeruginosa , Staphylococcus aureus , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/prevention & control , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/administration & dosage , Cathelicidins , Microbial Sensitivity Tests/methods , Bacterial Toxins , Drug Liberation , Cell Movement/drug effects , Carbon/chemistry , Biofilms/drug effects
5.
Sci Rep ; 14(1): 11423, 2024 05 19.
Article in English | MEDLINE | ID: mdl-38763922

ABSTRACT

Negative pressure wound therapy with instillation and dwell time (NPWTi-d) is increasingly used for a diverse range of wounds. Meanwhile, the topical wound irrigation solution consisting of polyhexamethylene biguanide and betaine (PHMB-B) has shown efficacy in managing wound infections. However, the effectiveness of this solution as a topical instillation solution for NPWTi-d in patients with diabetic foot infections (DFIs) has not been thoroughly studied. The objective of this retrospective study was to evaluate the impact of using PHMB-B as the instillation solution during NPWTi-d on reducing bioburden and improving clinical outcomes in patients with DFIs. Between January 2017 and December 2022, a series of patients with DFIs received treatment with NPWTi-d, using either PHMB-B or normal saline as the instillation solution. Data collected retrospectively included demographic information, baseline wound characteristics, and treatment outcomes. The study included 61 patients in the PHMB-B group and 73 patients in the normal saline group, all diagnosed with DFIs. In comparison to patients treated with normal saline, patients with PHMB-B exhibited no significant differences in terms of wound bed preparation time (P = 0.5034), length of hospital stay (P = 0.6783), NPWTi-d application times (P = 0.1458), duration of systematic antimicrobial administration (P = 0.3567), or overall cost of hospitalization (P = 0.6713). The findings of the study suggest that the use of either PHMB-B or normal saline as an instillation solution in NPWTi-d for DFIs shows promise and effectiveness, yet no clinical distinction was observed between the two solutions.


Subject(s)
Anti-Infective Agents, Local , Biguanides , Diabetic Foot , Negative-Pressure Wound Therapy , Saline Solution , Wound Healing , Humans , Diabetic Foot/therapy , Diabetic Foot/drug therapy , Male , Female , Negative-Pressure Wound Therapy/methods , Middle Aged , Saline Solution/administration & dosage , Saline Solution/therapeutic use , Retrospective Studies , Anti-Infective Agents, Local/administration & dosage , Anti-Infective Agents, Local/therapeutic use , Aged , Biguanides/therapeutic use , Biguanides/administration & dosage , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/therapy , Therapeutic Irrigation/methods , Betaine/administration & dosage , Betaine/therapeutic use , Treatment Outcome
6.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738757

ABSTRACT

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , Indoles , NF-kappa B , Nanoparticles , Quorum Sensing , Wound Healing , Biofilms/drug effects , Nanoparticles/chemistry , Mice , NF-kappa B/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Animals , Quorum Sensing/drug effects , Indoles/chemistry , Indoles/pharmacology , Signal Transduction/drug effects , Flavanones/chemistry , Flavanones/pharmacology , RAW 264.7 Cells , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Polymers/chemistry , Polymers/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/pathology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Humans
7.
Int J Biol Macromol ; 269(Pt 2): 132140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719006

ABSTRACT

Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1ß, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.


Subject(s)
Anti-Bacterial Agents , Exosomes , Fibrin , Hemostasis , Wound Healing , Wound Healing/drug effects , Animals , Hemostasis/drug effects , Mice , Fibrin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Exosomes/metabolism , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Humans , Wound Infection/drug therapy , Nanoparticles/chemistry , Gels/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Male
8.
Front Cell Infect Microbiol ; 14: 1386483, 2024.
Article in English | MEDLINE | ID: mdl-38756229

ABSTRACT

Background: Ducrosia anethifolia is an aromatic desert plant used in Saudi folk medicine to treat skin infections. It is widely found in Middle Eastern countries. Methods: A methanolic extract of the plant was prepared, and its phytoconstituents were determined using LC-MS. In-vitro and in-vivo antibacterial and antibiofilm activities of the methanolic extract were evaluated against multidrug-resistant bacteria. The cytotoxic effect was assessed using HaCaT cell lines in-vitro. Diabetic mice were used to study the in-vivo antibiofilm and wound healing activity using the excision wound method. Results: More than 50 phytoconstituents were found in the extract after LC-MS analysis. The extract exhibited antibacterial activity against both the tested pathogens. The extract was free of irritant effects on mice skin, and no cytotoxicity was observed on HaCaT cells with an IC50 value of 1381 µg/ml. The ointment formulation of the extract increased the healing of diabetic wounds. The microbial load of both pathogens in the wounded tissue was also reduced after the treatment. The extract was more effective against methicillin-resistant Staphylococcus aureus (MRSA) than MDR-P. aeruginosa in both in vitro and in vivo experiments. Further, skin regeneration was also observed in histological studies. Conclusions: The results showed that D. anethifolia methanol extract supports wound healing in infected wounds in diabetic mice through antibacterial, antibiofilm, and wound healing activities.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diabetes Mellitus, Experimental , Methicillin-Resistant Staphylococcus aureus , Plant Extracts , Pseudomonas aeruginosa , Wound Healing , Animals , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Diabetes Mellitus, Experimental/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Cell Line , HaCaT Cells , Male , Wound Infection/drug therapy , Wound Infection/microbiology , Disease Models, Animal , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
9.
Int J Biol Macromol ; 269(Pt 2): 132031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705325

ABSTRACT

Bacterially infected wounds are a serious threat to patients' lives and health, and multifunctional dressings with antimicrobial properties and healing promotion are urgently needed. Thus, we used the cationic and anionic properties of chitosan (CS)-nerol (N) derivative (CSN) and carboxymethylcellulose (CMC) to prepare asymmetric layer-by-layer self-assembled (LBL) composite films (CSN-CMC LBL films) with antibacterial and healing properties using a spin-coating method. SEM images showed that the CSN-CMC LBL films had completely different degrees of roughness at the bottom (hydrophilic layer) and at the top (hydrophobic layer), with the roughness at the top increasing as the number of layers increased. The CSN and CMC were used to prepare asymmetric LBL films via the electrostatic attraction of -COO- and NH3+. In addition, adhesion and water contact angle tests showed that the CSN-CMC LBL films had enhanced tissue adhesion and good hydrophobicity. These materials had excellent antimicrobial activity and good biocompatibility. Importantly, the animal infection model results showed that CSN-CMC-8 LBL films effectively eliminated the infection in vivo, inhibited inflammation, promoted vascular regeneration, accelerated the epithelialization process, and achieved high quality healing. Overall, the CSN-CMC LBL films in this study showed considerable potential for application in infected wound healing.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Animals , Wound Healing/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Wound Infection/drug therapy , Hydrophobic and Hydrophilic Interactions , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Male
10.
Wounds ; 36(4): 108-114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38743855

ABSTRACT

BACKGROUND: HOCl (eg, pHAp) preserved solutions have antimicrobial properties and are considered safe and effective for wound management. NPWTi-d (or NPWTi) is an established adjunctive wound modality for a variety of wound etiologies in various anatomic locations in which an instillate solution dwells on the surface of the wound to assist in wound bed preparation. A variety of solutions have been used, including 0.9% normal saline wound cleansers and antiseptics. pHAp is growing in popularity as the solution of choice for NPWTi-d. OBJECTIVE: To evaluate consensus statements on the use of NPWTi-d with pHAp. METHODS: A 15-member multidisciplinary panel of expert clinicians in the United States, Canada, and France convened in person in April 2023 in Washington, D.C. and/or corresponded later to discuss 10 statements on the use of pHAp with NPWTi-d. The panelists then replied "agree" or "disagree" to each statement and had the option to provide comments. RESULTS: Ten consensus statements are presented, along with the proportion of agreement or disagreement and summary comments. Although agreement with the statements on NPWTi-d with pHAp varied, the statements appear to reflect individual preferences for use rather than concerns about safety or efficacy. CONCLUSION: The consensus indicates that NPWTi-d with pHAp can have a beneficial effect in wound care.


Subject(s)
Consensus , Hypochlorous Acid , Negative-Pressure Wound Therapy , Wound Healing , Humans , Negative-Pressure Wound Therapy/methods , Hypochlorous Acid/therapeutic use , Wound Healing/drug effects , Wounds and Injuries/therapy , Therapeutic Irrigation/methods , Canada , Wound Infection/prevention & control , Wound Infection/drug therapy , United States
11.
Int Wound J ; 21(5): e14878, 2024 May.
Article in English | MEDLINE | ID: mdl-38682897

ABSTRACT

The primary objective of this study was to develop a carboxymethyl cellulose (CMC) and carboxymethyl chitosan (CMCS) hydrogel containing ethylene diamine tetra acetic acid (EDTA) as the materials for wound healing. CMC and CMCS solutions were prepared with a concentration of 4% (w/v). These solutions were made using normal saline serum with a concentration of 0.5% (v/v). Additionally, EDTA with the concentrations of 0.01%, 0.05%, 0.1%, 0.5%, 1%, and 2% (w/v) was included in the prepared polymer solution. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with average in size 88.71 ± 5.93 µm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. The antibacterial experiments showed that the formulated CMC/CMCS/EDTA 0.5% hydrogel inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, the produced hydrogels were haemocompatible and biocompatible. At the last stage, the evaluation of wound healing in the animal model demonstrated that the use of the produced hydrogels significantly improved the process of wound healing. Finally, the findings substantiated the effectiveness of the formulated hydrogels as the materials for promoting wound healing and antibacterial agents.


Subject(s)
Biofilms , Carboxymethylcellulose Sodium , Chitosan , Chitosan/analogs & derivatives , Edetic Acid , Hydrogels , Pseudomonas aeruginosa , Staphylococcus aureus , Wound Healing , Animals , Chitosan/pharmacology , Rats , Edetic Acid/pharmacology , Edetic Acid/therapeutic use , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Carboxymethylcellulose Sodium/pharmacology , Wound Healing/drug effects , Biofilms/drug effects , Hydrogels/pharmacology , Disease Models, Animal , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Rats, Wistar , Staphylococcal Infections/drug therapy , Wound Infection/drug therapy , Pseudomonas Infections/drug therapy
12.
J Wound Care ; 33(5): 335-347, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38683776

ABSTRACT

OBJECTIVE: Burn injuries pose a heightened risk of infection, which is primarily responsible for increased morbidity and mortality. Factors such as extensive skin damage and compromised immunity exacerbate this vulnerability. Pseudomonas aeruginosa and Staphylococcus aureus are frequently identified in burns, with Gram-negative Pseudomonas aeruginosa often resistant to antibacterial agents. While Flaminal, an alginate-based wound dressing (Flen Health, Belgium), aids wound healing, its antibacterial effects are limited compared with 1% silver sulfadiazine (1% SSD). In contrast, Prontosan Wound Gel X, a betaine and polyhexanide-based hydrogel (B. Braun Medical AG, Switzerland), has been shown to effectively combat various microbes and promotes wound healing. METHOD: In this study, two research cohorts were retrospectively established (control group: patients receiving standard of care with the alginate-based wound dressing; intervention group: patients receiving the polyhexanide hydrogel wound dressing), comprising patients admitted to a burn centre between 2019 and 2022. Patients were eligible when continuous wound treatment with either of the two wound dressings was performed. Laser Doppler imaging (LDI) scans were conducted. Regions of interest (ROIs) were selected based on LDI scans and divided into healing time categories. Wound swabs were collected and the presence of Pseudomonas aeruginosa and Staphylococcus aureus was documented. Bacterial load was evaluated using a semiquantitative scale. Wound healing was recorded. RESULTS: The control group consisted of 31 patients with 93 ROIs, while the intervention group had 67 ROIs involving 29 patients. Both groups exhibited similar proportions of healing time categories (p>0.05). The polyhexanide hydrogel dressing outperformed the alginate-based dressing in antiseptic efficacy by significantly reducing the incidence of Pseudomonas aeruginosa- and Staphylococcus aureus-positive cultures in patients' wounds. Wound healing time for conservative treatment was comparable between groups. CONCLUSION: In this study, the polyhexanide hydrogel dressing minimised Pseudomonas aeruginosa and Staphylococcus aureus colonisation in burn wounds, demonstrating strong antibacterial properties, emphasising its potential to minimise infections in burn injuries.


Subject(s)
Alginates , Anti-Bacterial Agents , Biguanides , Burns , Wound Healing , Humans , Alginates/therapeutic use , Biguanides/therapeutic use , Burns/therapy , Male , Female , Retrospective Studies , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Middle Aged , Wound Healing/drug effects , Pseudomonas aeruginosa/drug effects , Bandages , Wound Infection/drug therapy , Staphylococcus aureus/drug effects , Hydrogels
13.
J Wound Care ; 33(5): 290-296, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38683781

ABSTRACT

OBJECTIVE: To assess the clinical impact and acceptance of an infection management (IM) pathway, designed to improve the consistency of care of wound infection when introduced, and supported by an educational programme. METHOD: An education and evaluation programme (T3 programme) was-conducted in Portugal, Spain and Italy. This consisted of a two-hour educational, virtual seminar, followed by a four-week evaluation of an IM pathway during which survey data were collected on the impact of this pathway on clinician-selected patients. Finally, all participants reconvened for a virtual meeting during which the combined results were disseminated. The pathway provided guidance to clinicians regarding the targeted use of antimicrobial wound dressings according to the presence and absence of signs and symptoms of wound infection. RESULTS: Responses relating to 259 patients treated according to the IM pathway, 139 (53.7%) of whom had received previous antimicrobial treatment, were captured. Signs and symptoms of infection resolved within four weeks of treatment in >90% of patients. All 25 patients who had received prior antimicrobial treatment for ≥3 months experienced a resolution in the signs and symptoms of infection within four weeks. The majority of participating clinicians agreed that the IM pathway improved decision-making (94.9%) and confidence (97.3%), and helped to determine the correct antimicrobial treatment (91.4%) in the context of wound infection. CONCLUSION: The T3 programme was an efficient way to deliver a structured educational programme. The use of the IM pathway resulted in >90% of patients achieving resolution of their signs and symptoms of wound infection.


Subject(s)
Wound Infection , Humans , Wound Infection/drug therapy , Wound Infection/therapy , Italy , Critical Pathways , Portugal , Spain , Female , Male , Anti-Bacterial Agents/therapeutic use , Bandages , Middle Aged
14.
Int J Biol Macromol ; 267(Pt 1): 131575, 2024 May.
Article in English | MEDLINE | ID: mdl-38614178

ABSTRACT

Wound healing is a dynamic and complex process, it's urgent to develop new wound dressings with excellent performance to promote wound healing at the different stages. Here, a novel composite hydrogel dressing composed by silver nanoparticles (AgNPs) impregnated adenine-modified chitosan (CS-A) and octafunctionalized polyhedral oligomeric silsesquioxane (POSS) of benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO) solution was presented to solve the problem of wound infection. Modification of chitosan with adenine, not only can improve the water solubility of chitosan, but also introduce bioactive substances to promote cell proliferation. CS-A and POSS-PEG-CHO were cross-linked by Schiff-base reaction to form the injectable self-healing hydrogel. On this basis, AgNPs were added into the hydrogel, which endows the hydrogel with better antibacterial activity. Moreover, this kind of hydrogel exhibits excellent cell proliferation properties. Studies demonstrated that the hydrogel can significantly accelerate the closure of infected wounds. The histological analysis and immunofluorescence staining demonstrated that the wounds treated with the composite hydrogel exhibited fewer inflammatory cells, more collagen deposition and angiogenesis, faster regeneration of epithelial tissue. Above all, adenine-modified chitosan composite hydrogel with AgNPs loaded was considered as a dressing material with great application potential for promoting the healing of infected wounds.


Subject(s)
Adenine , Anti-Bacterial Agents , Cell Proliferation , Chitosan , Hydrogels , Metal Nanoparticles , Polyethylene Glycols , Silver , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyethylene Glycols/chemistry , Silver/chemistry , Silver/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Metal Nanoparticles/chemistry , Adenine/pharmacology , Adenine/chemistry , Mice , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Rats , Humans , Wound Infection/drug therapy
15.
Int J Biol Macromol ; 269(Pt 2): 131795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670175

ABSTRACT

Bacterial infections during wound healing impede the healing process and trigger local or systemic inflammatory reactions. Consequently, there is an urgent need to develop a new material with antimicrobial and antioxidant properties to promote infected wound healing. A synergistically antimicrobial and antioxidant hyaluronic acid hydrogel (HMn) is prepared by employing MnO2 nanosheets into 4ARM-PEG5000-SH crosslinked methacrylated hyaluronic acid (HAMA) network. The coordination between sulfhydryl groups of 4ARM-PEG5000-SH and MnO2 nanosheets ensures entrapment of the nanosheets within the hydrogel, while the interaction between 4ARM-PEG5000-SH and HAMA results in facile gelation through thiol-ene click reaction. MnO2 nanosheets exhibit strong photothermal properties and reactive oxygen species (ROS) scavenging abilities, while hyaluronic acid promotes wound healing. When subjected to near-infrared (NIR) irradiation, the HMn achieves a bactericidal rate of 95.24 % for Staphylococcus aureus and nearly 100 % for Escherichia coli. In animal experiments, treatment with the HMn under NIR irradiation results in the best wound healing outcomes. Both in vitro and vivo biocompatible assays demonstrate that the HMn has rarely cell cytotoxicity and tissue damage. The HMn is easy to prepare and has good biocompatibility as well as efficient antibacterial and antioxidant properties, providing a novel method for the treatment of infected wounds.


Subject(s)
Antioxidants , Escherichia coli , Hyaluronic Acid , Hydrogels , Staphylococcus aureus , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Wound Healing/drug effects , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Humans , Drug Synergism
16.
Int J Biol Macromol ; 269(Pt 2): 131896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677681

ABSTRACT

The recovery of infectious wound tissues presents a significant global health challenge due to the impediments posed by the harsh healing microenvironment, which includes ongoing bacterial invasion, high oxidative stress, inflammatory response, and impaired angiogenesis. To overcome the above issues, we propose a composite hydrogel based on the multiple-crosslinked mechanism involving the covalent network of CC bonds within catechol and maleic-modified HA (CMHA), the self-assembly network of glycyrrhizic acid (GA), and the metal-polyphenol coordination induced by ZHMCe for accelerating infectious wound healing. The resulting CMHA/GA/ZHMCe hydrogels demonstrate enhanced mechanical, adhesive, antioxidative, and antibacterial properties. Importantly, the hydrogel system possesses wound environment-responsive properties that allow it to adapt to the specific therapeutic requirements of different stages by regulating various enzyme activities in the healing of infected wounds. Furthermore, the biocompatible CMHA/GA/ZHMCe shows the ability to promote cell migration and angiogenesis in vitro while reprogramming macrophages toward an anti-inflammatory phenotype due to the effective release of active ingredients. In vivo experiments confirm that the CMHA/GA/ZHMCe hydrogel significantly enhances infectious wound healing by accelerating re-epithelialization, promoting collagen deposition, regulating inflammation, and contributing to vascularization. These findings underscore the therapeutic potential of our hydrogel dressings for the treatment of bacterially infected cutaneous wound healing.


Subject(s)
Hyaluronic Acid , Hydrogels , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Mice , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Male , RAW 264.7 Cells , Humans , Wound Infection/drug therapy , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry
17.
J Mater Chem B ; 12(21): 5111-5127, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38687208

ABSTRACT

Recently, bacterial infections have become a global crisis, greatly threatening the health of human beings. The development of a non-antibiotic biomaterial is recognized as an alternative way for the effective treatment of bacterial infections. In the present work, a multifunctional copper peroxide (CP) nanodot-decorated gold nanostar (GNS)/silica nanorod (SiNR) Janus nanostructure (GNS@CP/SiNR) with excellent antibacterial activity was reported. Due to the formation of the Janus nanostructure, GNS@CP/SiNR displayed strong plasmonic resonance absorbance in the near infrared (NIR)-II region that enabled the nanosystem to achieve mild photothermal therapy (MPTT). In acidic conditions, CP decorated on GNS@CP/SiNR dissociated rapidly by releasing Cu2+ and H2O2, which subsequently transformed to ˙OH via the Fenton-like reaction for chemodynamic therapy (CDT). As a result, GNS@CP/SiNR could effectively inhibit both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and eradicate the associated bacterial biofilms by exerting the synergistic MPTT/CDT antibacterial effect. Moreover, GNS@CP/SiNR was also demonstrated to be effective in treating wound infections, as verified on the S. aureus-infected full thickness excision wound rat model. Our mechanism study revealed that the synergistic MPTT/CDT effect of GNS@CP/SiNR firstly caused bacterial membrane damage, followed by boosting intracellular ROS via the severe oxidative stress effect, which subsequently caused the depletion of intracellular GSH and DNA damage, finally leading to the death of bacteria.


Subject(s)
Anti-Bacterial Agents , Copper , Escherichia coli , Gold , Hydroxyl Radical , Nanotubes , Silicon Dioxide , Staphylococcus aureus , Gold/chemistry , Gold/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Nanotubes/chemistry , Hydroxyl Radical/metabolism , Hydroxyl Radical/chemistry , Copper/chemistry , Copper/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Rats , Wound Infection/drug therapy , Wound Infection/microbiology , Photothermal Therapy , Infrared Rays , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry , Rats, Sprague-Dawley , Biofilms/drug effects
18.
Int J Biol Macromol ; 268(Pt 2): 131637, 2024 May.
Article in English | MEDLINE | ID: mdl-38636748

ABSTRACT

Bacterial-infected wound repair has become a significant public health concern. This study developed a novel 3D-printed piezocatalytic SF-MA/PEGDA/Ag@BT (SPAB) hydrogels were fabricated by using digital light processing. These hydrogels exhibited high consistency, mechanical properties and good biocompatibility. Besides, the SPAB hydrogels exhibited excellent piezocatalytic performance and thus could induce piezoelectric polarization under ultrasound to generate reactive oxygen species (ROS). The SPAB hydrogels possessed an antibacterial rate of 99.23% and 99.96% for Escherichia coli and Staphylococcus aureus, respectively, under 5 min of ultrasonic stimulation (US) in vitro. The US-triggered piezocatalytic performance could increase antibacterial activity and improve the healing process of the infected wound. Therefore, the 3D printed piezocatalytic SPAB hydrogels could be unutilized as wound dressing in the field of bacterial-infected wound repair.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hydrogels , Printing, Three-Dimensional , Staphylococcus aureus , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Wound Infection/microbiology , Catalysis , Animals , Reactive Oxygen Species/metabolism , Humans , Polyethylene Glycols/chemistry , Ultrasonic Waves
19.
Int J Biol Macromol ; 268(Pt 2): 131642, 2024 May.
Article in English | MEDLINE | ID: mdl-38641283

ABSTRACT

To better treat bacteria-infected wounds and promote healing, new wound dressings must be developed. In this study, we obtained PA@Fe by chelating iron trivalent ions (Fe3+) with protocatechualdehyde (PA), which has a catechol structure. Subsequently, we reacted it with ethylene glycol chitosan (GC) via a Schiff base reaction and loaded vancomycin to obtain an antibacterial Gel@Van hydrogel with a photothermal response. The as-prepared Gel@Van hydrogel exhibited good injectability, self-healing, hemostasis, photothermal stability, biocompatibility, and antioxidant and antibacterial properties. Moreover, Gel@Van hydrogel achieved highly synergistic antibacterial efficacy through photothermal and antibiotic sterilization. In a mouse skin-damaged infection model, Gel@Van hydrogel had a strong ability to promote the healing of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds, indicating the great potential application value of Gel@Van hydrogel in the field of treating and promoting the healing of infected wounds.


Subject(s)
Benzaldehydes , Catechols , Hydrogels , Iron , Polysaccharides , Wound Infection , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hydrogels/therapeutic use , Iron/chemistry , Polysaccharides/chemistry , Catechols/chemistry , Benzaldehydes/chemistry , Wound Infection/drug therapy , Wound Healing/drug effects , Vancomycin/therapeutic use , Photothermal Therapy , Models, Animal , Animals , Mice , Staphylococcal Skin Infections/drug therapy
20.
J Wound Care ; 33(Sup4a): xcix-cx, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38588056

ABSTRACT

Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.


Subject(s)
Nanoparticles , Staphylococcal Infections , Wound Infection , Humans , Biofilms , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa , Nanoparticles/therapeutic use , Wound Infection/drug therapy , Wound Infection/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...