Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Radiat Biol ; 82(12): 877-86, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17178628

ABSTRACT

PURPOSE: Non-random occurrence of induced chromosome breakpoints (BP) has been repeatedly reported. DNA synthesis and chromatin remodeling may influence chromosome BP localization. The CHO9 X chromosome exhibits an early replicating short euchromatic arm (Xpe) and a late replicating long heterochromatic arm (Xqh). We investigated the role played by DNA replication and related chromatin remodeling processes on BP distribution in eu/heterochromatin using the CHO9 X chromosome as a model. MATERIALS AND METHODS: BP induced by etoposide, a topoisomerase II inhibitor, as well as by the S-dependent clastogens ultraviolet-C light (UV-C) and methyl methanesulfonate (MMS) were mapped to CHO9 X chromosome arms. The base analogue 5-bromo-2'-deoxyuridine (BrdUrd) was pulse-added immediately after UV-C irradiation or during etoposide and MMS treatments (40 min) to identify cells in early S-phase (Xpe labeled) or late S-phase (Xqh labeled) after indirect BrdUrd immunodetection in metaphase spreads using primary anti-BrdUrd and secondary fluorochrome-tagged antibodies. RESULTS: During early S-phase, BP induced by etoposide and MMS mapped preferentially to Xpe while BP produced by UV-C localized randomly. BP induced by all agents during late S-phase clustered in Xqh. CONCLUSIONS: Results obtained suggest that replication time of eu/heterochromatin as well as chromatin remodeling may determine BP localization on the CHO9 X chromosome.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage/genetics , DNA Replication/physiology , DNA Replication/radiation effects , X Chromosome/genetics , X Chromosome/radiation effects , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Radiation , Radiation Dosage
2.
Cytogenet Genome Res ; 104(1-4): 182-7, 2004.
Article in English | MEDLINE | ID: mdl-15162035

ABSTRACT

SORB (selected observed residual breakpoints) induced by ionizing radiation or endonucleases are often non-randomly distributed in mammalian chromosomes. However, the role played by chromatin structure in the localization of chromosome SORB is not well understood. Anti-topoisomerase drugs such as etoposide are potent clastogens and unlike endonucleases or ionizing radiation, induce DNA double-strand breaks (DSB) by an indirect mechanism. Topoisomerase II (Topo II) is a main component of the nuclear matrix and the chromosome scaffold. Since etoposide leads to DSB by influencing the activity of Topo II, this compound may be a useful tool to study the influence of the chromatin organization on the distribution of induced SORB in mammalian chromosomes. In the present work, we compared the distribution of SORB induced during S-phase by etoposide or X-rays in the short euchromatic and long heterochromatic arms of the CHO9 X chromosome. The S-phase stage (early, mid or late) at which CHO9 cells were exposed to etoposide or X-rays was marked by incorporation of BrdU during treatments and later determined by immunolabeling of metaphase chromosomes with an anti-BrdU FITC-coupled antibody. The majority of treated cells were in late S-phase during treatment either with etoposide or X-rays. SORB induced by etoposide mapped preferentially to Xq but random localization was observed for SORB produced by X-rays. Possible explanations for the uneven distribution of etoposide-induced breakpoints along Xq are discussed.


Subject(s)
CHO Cells/drug effects , CHO Cells/radiation effects , Chromosome Breakage , Enzyme Inhibitors/toxicity , Etoposide/toxicity , Topoisomerase II Inhibitors , X Chromosome/drug effects , X Chromosome/radiation effects , Animals , CHO Cells/ultrastructure , Chromatids/drug effects , Chromatids/radiation effects , Chromatids/ultrastructure , Chromosome Aberrations , Chromosome Mapping , Cricetinae , Cricetulus , DNA/drug effects , DNA/radiation effects , DNA Damage , Female , S Phase/drug effects , S Phase/radiation effects , X Chromosome/genetics , X Chromosome/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL