Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983846

ABSTRACT

Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD-VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Type IV Secretion Systems/antagonists & inhibitors , Type IV Secretion Systems/chemistry , Xanthomonas/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Structure-Activity Relationship , Type IV Secretion Systems/genetics , Xanthomonas/genetics
2.
Angew Chem Int Ed Engl ; 60(41): 22172-22177, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34355488

ABSTRACT

Natural products are a major source of new antibiotics. Here we utilize biosynthetic instructions contained within metagenome-derived congener biosynthetic gene clusters (BGCs) to guide the synthesis of improved antibiotic analogues. Albicidin and cystobactamid are the first members of a new class of broad-spectrum ρ-aminobenzoic acid (PABA)-based antibiotics. Our search for PABA-specific adenylation domain sequences in soil metagenomes revealed that BGCs in this family are common in nature. Twelve BGCs that were bio-informatically predicted to encode six new congeners were recovered from soil metagenomic libraries. Synthesis of these six predicted structures led to the identification of potent antibiotics with changes in their spectrum of activity and the ability to circumvent resistance conferred by endopeptidase cleavage enzymes.


Subject(s)
4-Aminobenzoic Acid/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Biological Products/chemical synthesis , 4-Aminobenzoic Acid/chemistry , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Molecular Structure , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Xanthomonas/chemistry
3.
Org Lett ; 23(18): 7023-7027, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34398605

ABSTRACT

Albicidin is a potent antibacterial oligoaromatic peptide that is susceptible to the protease AlbD, a resistance factor. This potentially restricts the use of albicidin as a drug. To overcome this obstacle, we synthesized and evaluated six analogues with isosteric replacement of the key amide link. Protease stability was established while maintaining the antibacterial activity, including three analogues with up to eight times higher activity compared with the natural albicidin.


Subject(s)
Amides/chemistry , Bacterial Proteins/chemistry , Protease Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Molecular Structure , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Protease Inhibitors/chemistry , Xanthomonas/chemistry
4.
J Microbiol Methods ; 183: 106173, 2021 04.
Article in English | MEDLINE | ID: mdl-33617895

ABSTRACT

The efficiency of alternative preservation techniques for Xanthomonas arboricola pv pruni was studied. The preservation methods in sunflower seeds, glass beads and sterile soil were suitable for maintaining viability and productive capacity of xanthan pruni.


Subject(s)
Bacteriological Techniques/methods , Preservation, Biological/methods , Xanthomonas/chemistry , Microbial Viability , Temperature , Xanthomonas/growth & development
5.
Micron ; 143: 103024, 2021 04.
Article in English | MEDLINE | ID: mdl-33549851

ABSTRACT

The organelle-like structures of Xanthomonas citri, a bacterial pathogen that causes citrus canker, were investigated using an analytical transmission electron microscope. After high-pressure freezing, the bacteria were then freeze-substituted for imaging and element analysis. Miniscule electron-dense structures of varying shapes without a membrane enclosure were frequently observed near the cell poles in a 3-day culture. The bacteria formed cytoplasmic electron-dense spherical structures measuring approximately 50 nm in diameter. Furthermore, X. citri produced electron-dense or translucent ellipsoidal intracellular or extracellular granules. Single- or double-membrane-bound vesicles, including outer-inner membrane vesicles, were observed both inside and outside the cells. Most cells had been lysed in the 3-week X. citri culture, but they harbored one or two electron-dense spherical structures. Contrast-inverted scanning transmission electron microscopy images revealed distinct white spherical structures within the cytoplasm of X. citri. Likewise, energy-dispersive X-ray spectrometry showed the spatial heterogeneity and co-localization of phosphorus, oxygen, calcium, and iron only in the cytoplasmic electron-dense spherical structures, thus corroborating the nature of polyphosphate granules.


Subject(s)
Cytoplasmic Granules/ultrastructure , Vacuoles/ultrastructure , Xanthomonas/chemistry , Xanthomonas/ultrastructure , Calcium/chemistry , Citrus/microbiology , Cytoplasmic Granules/chemistry , Iron/chemistry , Microscopy, Electron, Transmission , Phosphorus/chemistry , Plant Diseases/microbiology
6.
Nat Commun ; 12(1): 367, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446650

ABSTRACT

Xylanolytic enzymes from glycoside hydrolase family 43 (GH43) are involved in the breakdown of hemicellulose, the second most abundant carbohydrate in plants. Here, we kinetically and mechanistically describe the non-reducing-end xylose-releasing exo-oligoxylanase activity and report the crystal structure of a native GH43 Michaelis complex with its substrate prior to hydrolysis. Two distinct calcium-stabilized conformations of the active site xylosyl unit are found, suggesting two alternative catalytic routes. These results are confirmed by QM/MM simulations that unveil the complete hydrolysis mechanism and identify two possible reaction pathways, involving different transition state conformations for the cleavage of xylooligosaccharides. Such catalytic conformational promiscuity in glycosidases is related to the open architecture of the active site and thus might be extended to other exo-acting enzymes. These findings expand the current general model of catalytic mechanism of glycosidases, a main reaction in nature, and impact on our understanding about their interaction with substrates and inhibitors.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Xanthomonas/enzymology , Bacterial Proteins/genetics , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Glycoside Hydrolases/genetics , Kinetics , Models, Molecular , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Xanthomonas/chemistry , Xanthomonas/genetics , Xylose/chemistry , Xylose/metabolism
7.
BMC Microbiol ; 20(1): 344, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33183263

ABSTRACT

BACKGROUND: Heat resistance is a common characteristic of harpins, a class of proteins found in Gram-negative bacteria, which may be related to the stability of coiled-coil (CC) structure. The CC structure is a ubiquitous protein folding and assembly motif made of α-helices wrapping around each other forming a supercoil. Specifically, whether the stability of the CC structure near to N-terminus of four selected harpin proteins from Xanthomonas (hereafter referred to as Hpa1) would influence their characteristics of heat resistance was investigated. We used bioinformatics approach to predict the structure of Hpa1, used the performance of hypersensitive response (HR)-induction activity of Hpa1 and circular dichroism (CD) spectral analyses to detect the relationship between the stability of the CC structure of Hpa1 and heat resistance. RESULTS: Each of four-selected Hpa1 has two α-helical regions with one in their N-terminus that could form CC structure, and the other in their C-terminus that could not. And the important amino acid residues involved in the CC motifs are located on helices present on the surface of these proteins, indicating they may engage in the formation of oligo mericaggregates, which may be responsible for HR elicitation by harpins and their high thermal stability. Increased or decreased the probability of forming a CC could either induce a stronger HR response or eliminate the ability to induce HR in tobacco after high temperature treatment. In addition, although the four Hpa1 mutants had little effect on the induction of HR by Hpa1, its thermal stability was significantly decreased. The α-helical content increased with increasing temperature, and the secondary structures of Hpa1 became almost entirely α-helices when the temperature reached 200 °C. Moreover, the stability of the CC structure near to N-terminus was found to be positively correlated with the heat resistance of Hpa1. CONCLUSIONS: The stability of the CC structure might sever as an inner drive for mediating the heat resistance of harpin proteins. Our results offer a new insight into the interpretation of the mechanism involved in the heat resistance of harpin protein and provide a theoretical basis for further harpin function investigations and structure modifications.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Xanthomonas/chemistry , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Hot Temperature , Mutation , Plant Diseases/microbiology , Protein Structure, Secondary , Protein Structure, Tertiary , Nicotiana/microbiology , Xanthomonas/classification
8.
Braz. arch. biol. technol ; 63: e20190046, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132244

ABSTRACT

Abstract This research aims to determine the efficiency of chitosan and xanthan gum films in conservation of croaker fillets kept in refrigeration for 9 days. Proximal composition, loss of mass, color, pH, TVB-N (Total Volatile Bases) and microbiological profile were assessed. The films were prepared with chitosan and xanthan gum in varying mass proportions 100:0, m:m (C100XG0); 60:40, m:m (C60XG40); 50:50, m:m (C50XG50). They presented the respective values for moisture content, water solubility, thickness and water vapor permeability: 24.59%, 19.50%, 0.086 mm and 11.45gm-1.s-1.Pa-1for C100XG0; 24.58%; 20.27%, 0.091 mm and 10.41 gm-1.s-1.Pa-1for C60XG40; 22.11%, 22.06%, 0.089 mm and 10.68 gm-1.s-1.Pa-1 forC50XG50.The films were made in small bags format capable to hold about 20 g of fish fillets. A control sample was prepared in parallel, using polyethylene bags under the same storage conditions. The results showed that the chitosan films combined with xanthan gum had excellent antimicrobial properties, capable of preserving the quality of chilled fish fillets during the studied period, since it inhibited the growth of Staphylococcus coagulase-positive, Salmonella spp and coliforms at 45 ° C. Mass loss of the croaker fillets was not significantly affected by xanthan gum addition to the films. On the other hand, xanthan gum addition affected pH and color parameters of the corvina fillets. It was also verified that the combination of these two polymers promoted the reduction of N-BVT, being the C50XG50 film that presented the best response.


Subject(s)
Animals , Xanthomonas/chemistry , Food Packaging/methods , Chitosan/chemistry , Fishes/microbiology , Food Preservation/methods , Polysaccharides, Bacterial/chemistry , Anti-Infective Agents
9.
Int J Mol Sci ; 20(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615004

ABSTRACT

Plant pathogens secrete proteins called effectors into the cells of their host to modulate the host immune response against colonization. Effectors can either modify or arrest host target proteins to sabotage the signaling pathway, and therefore are considered potential drug targets for crop disease control. In earlier research, the Xanthomonas type III effector XopAI was predicted to be a member of the arginine-specific mono-ADP-ribosyltransferase family. However, the crystal structure of XopAI revealed an altered active site that is unsuitable to bind the cofactor NAD+, but with the capability to capture an arginine-containing peptide from XopAI itself. The arginine peptide consists of residues 60 through 69 of XopAI, and residue 62 (R62) is key to determining the protein-peptide interaction. The crystal structure and the molecular dynamics simulation results indicate that specific arginine recognition is mediated by hydrogen bonds provided by the backbone oxygen atoms from residues W154, T155, and T156, and a salt bridge provided by the E265 sidechain. In addition, a protruding loop of XopAI adopts dynamic conformations in response to arginine peptide binding and is probably involved in target protein recognition. These data suggest that XopAI binds to its target protein by the peptide-binding ability, and therefore, it promotes disease progression. Our findings reveal an unexpected and intriguing function of XopAI and pave the way for further investigation on the role of XopAI in pathogen invasion.


Subject(s)
ADP Ribose Transferases/chemistry , Arginine/chemistry , Peptides/chemistry , Xanthomonas/chemistry , ADP Ribose Transferases/genetics , Amino Acid Sequence/genetics , Arginine/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Molecular Dynamics Simulation , Oxygen/chemistry , Peptides/genetics , Plants/genetics , Plants/microbiology , Protein Binding , Protein Conformation , Signal Transduction/genetics , Xanthomonas/enzymology , Xanthomonas/pathogenicity
10.
Nucleic Acids Res ; 47(17): 9448-9463, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31400118

ABSTRACT

Overcoming lysogenization defect (OLD) proteins constitute a family of uncharacterized nucleases present in bacteria, archaea, and some viruses. These enzymes contain an N-terminal ATPase domain and a C-terminal Toprim domain common amongst replication, recombination, and repair proteins. The in vivo activities of OLD proteins remain poorly understood and no definitive structural information exists. Here we identify and define two classes of OLD proteins based on differences in gene neighborhood and amino acid sequence conservation and present the crystal structures of the catalytic C-terminal regions from the Burkholderia pseudomallei and Xanthamonas campestris p.v. campestris Class 2 OLD proteins at 2.24 Å and 1.86 Å resolution respectively. The structures reveal a two-domain architecture containing a Toprim domain with altered architecture and a unique helical domain. Conserved side chains contributed by both domains coordinate two bound magnesium ions in the active site of B. pseudomallei OLD in a geometry that supports a two-metal catalysis mechanism for cleavage. The spatial organization of these domains additionally suggests a novel mode of DNA binding that is distinct from other Toprim containing proteins. Together, these findings define the fundamental structural properties of the OLD family catalytic core and the underlying mechanism controlling nuclease activity.


Subject(s)
Burkholderia pseudomallei/chemistry , Catalytic Domain/genetics , Deoxyribonucleases/ultrastructure , Protein Conformation , Xanthomonas/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence/genetics , Burkholderia pseudomallei/genetics , Catalysis , Deoxyribonucleases/chemistry , Deoxyribonucleases/genetics , Evolution, Molecular , Lysogeny/genetics , Metals/chemistry , Protein Domains/genetics , Sequence Alignment , Xanthomonas/genetics
11.
J Agric Food Chem ; 67(26): 7512-7525, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31180659

ABSTRACT

Recent observations on the emergence of drug-resistant plant pathogenic bacteria have highlighted and elicited an acute campaign to develop novel, highly efficient antibiotic surrogates for managing bacterial diseases in agriculture. Thus, a type of racemic and chiral carbazole derivative containing an isopropanolamine pattern was systematically synthesized to discover low-cost and efficient antibacterial candidates. Screening results showed that compounds 2f, 6c, and 2j could significantly suppress the growth of tested plant pathogens, namely Xanthomonas oryzae pv oryzae, X. axonopodis pv citri, and Pseudomonas syringae pv actinidiae, and provided the corresponding EC50 values of 1.27, 0.993, and 0.603 µg/mL, which were significantly better than those of existing commercial drugs. In vivo studies confirmed their prospective applications for controlling plant bacterial diseases. Label-free quantitative proteomics analysis indicated that compound 2f could dramatically induce the up- and down-regulation of a total of 247 differentially expressed proteins, which was further validated by the parallel reaction monitoring technique. Moreover, fluorescence spectra and SEM images were obtained to further explore the antibacterial mechanism.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbazoles/chemistry , Carbazoles/pharmacology , Plant Diseases/microbiology , Propanolamines/chemistry , Pseudomonas syringae/drug effects , Xanthomonas/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Proteomics , Pseudomonas syringae/chemistry , Pseudomonas syringae/genetics , Pseudomonas syringae/metabolism , Structure-Activity Relationship , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthomonas/metabolism
12.
J Agric Food Chem ; 67(25): 6962-6969, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31150235

ABSTRACT

Target validation of current drugs remains the major challenge for target-based drug discovery, especially for agrochemical discovery. The bactericide 0 represents a novel lead structure and has shown potent efficacy against those diseases that are extremely difficult to control, such as rice bacterial leaf blight. However, no detailed target analysis of this bactericide has been reported. Here, we developed a panel of 0-derived probes 1-6, in which a conservative modification (alkyne tag) was introduced to keep the antibacterial activity of 0 and provide functionality for target identification via click chemistry. With these cell-permeable probes, we were able to discover dihydrolipoamide S-succinyltransferase (DLST) as an unprecedented target in living cells. The probes showed good preference for DLST, especially probe 1, which demonstrated distinct selectivity and reactivity. Also, we reported 0 as the first covalent DLST inhibitor, which has been used to confirm the involvement of DLST in the regulation of energy production.


Subject(s)
Acyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Oryza/microbiology , Plant Diseases/microbiology , Sulfones/chemistry , Xanthomonas/enzymology , Acyltransferases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Xanthomonas/chemistry , Xanthomonas/drug effects
13.
Glycobiology ; 29(3): 269-278, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30668692

ABSTRACT

Xanthan is a virulence factor produced by Xanthomonas spp. We previously demonstrated that this exopolysaccharide is not only essential for pathogenicity by contributing with bacterial survival but also its pyruvate substituents interfere with some plant defense responses. Deepening our studies about xanthan properties and structure, the aim of this work was to analyze the characteristics of xanthan produced by Xanthomonas in different culture media. We analyzed the xanthan produced by Xanthomonas citri subsp. citri (Xcc) in leaf extracts from grapefruit (a susceptible host of this bacterium) and compared it with the xanthan produced in a synthetic culture medium. We found that the xanthan produced in the grapefruit extract (Xan-GLE) presented shorter and more disordered molecules than xanthan produced in the synthetic medium (Xan-PYM). Besides, Xan-GLE resulted less viscous than Xan-PYM. The disordered molecular conformation of Xan-GLE could be attributed to its higher pyruvilation degree and lower acetylation degree compared with those detected in Xan-PYM. Meanwhile, the difference in the viscosity of both xanthans could be due to their molecules length. Finally, we cultured Xcc in the presence of the Xan-GLE or Xan-PYM and observed the formation of biofilm-like structures in both cases. We found significant differences in biofilm architecture between the two conditions, being the biofilm produced in presence of Xan-GLE similar to that formed in canker lesions developed in lemon plant leaves. Together, these results show how xanthan structure and properties changed when Xcc grew in a natural substrate and can contribute to better understand the biological role of xanthan.


Subject(s)
Citrus paradisi/chemistry , Plant Diseases/microbiology , Plant Leaves/chemistry , Polysaccharides, Bacterial/chemistry , Biofilms/growth & development , Citrus paradisi/microbiology , Plant Leaves/microbiology , Polysaccharides, Bacterial/biosynthesis , Xanthomonas/chemistry , Xanthomonas/genetics
14.
PLoS One ; 14(1): e0209988, 2019.
Article in English | MEDLINE | ID: mdl-30615696

ABSTRACT

Citrus canker is a plant disease caused by the bacteria Xanthomonas citri subsp. citri that affects all domestic varieties of citrus. Some annotated genes from the X. citri subsp. citri genome are assigned to an interesting class named "pathogenicity, virulence and adaptation". Amongst these is sodM, which encodes for the gene product XcSOD, one of four superoxide dismutase homologs predicted from the genome. SODs are widespread enzymes that play roles in the oxidative stress response, catalyzing the degradation of the deleterious superoxide radical. In Xanthomonas, SOD has been associated with pathogenesis as a counter measure against the plant defense response. In this work we initially present the 1.8 Å crystal structure of XcSOD, a manganese containing superoxide dismutase from Xanthomonas citri subsp. citri. The structure bears all the hallmarks of a dimeric member of the MnSOD family, including the conserved hydrogen-bonding network residues. Despite the apparent gene redundancy, several attempts to obtain a sodM deletion mutant were unsuccessful, suggesting the encoded protein to be essential for bacterial survival. This intriguing observation led us to extend our structural studies to the remaining three SOD homologs, for which comparative models were built. The models imply that X. citri subsp. citri produces an iron-containing SOD which is unlikely to be catalytically active along with two conventional Cu,ZnSODs. Although the latter are expected to possess catalytic activity, we propose they may not be able to replace XcSOD for reasons such as distinct subcellular compartmentalization or differential gene expression in pathogenicity-inducing conditions.


Subject(s)
Bacterial Proteins/chemistry , Superoxide Dismutase/chemistry , Xanthomonas/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Crystallography, X-Ray , Genes, Essential , Models, Molecular , Protein Conformation , Superoxide Dismutase/genetics , Xanthomonas/genetics , Xanthomonas/pathogenicity
15.
J Am Chem Soc ; 140(48): 16641-16649, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30422653

ABSTRACT

To combat the rise of antimicrobial resistance, the discovery of new antibiotics is paramount. Albicidin and cystobactamid are related natural product antibiotics with potent activity against Gram-positive and, crucially, Gram-negative pathogens. AlbA has been reported to neutralize albicidin by binding it with nanomolar affinity. To understand this potential resistance mechanism, we determined structures of AlbA and its complex with albicidin. The structures revealed AlbA to be comprised of two domains, each unexpectedly resembling the multiantibiotic neutralizing protein TipA. Binding of the long albicidin molecule was shared pseudosymmetrically between the two domains. The structure also revealed an unexpected chemical modification of albicidin, which we demonstrate to be promoted by AlbA, and to reduce albicidin potency; we propose a mechanism for this reaction. Overall, our findings suggest that AlbA arose through internal duplication in an ancient TipA-like gene, leading to a new binding scaffold adapted to the sequestration of long-chain antibiotics.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Asparagine/analogs & derivatives , Asparagine/chemistry , Asparagine/pharmacology , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cyclization , Drug Resistance, Multiple, Bacterial/physiology , Evolution, Molecular , Klebsiella oxytoca/chemistry , Microbial Sensitivity Tests , Mutation , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Organic Chemicals/pharmacology , Protein Binding , Xanthomonas/chemistry , Xanthomonas/metabolism
16.
Nat Commun ; 9(1): 3095, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082794

ABSTRACT

The worldwide emergence of antibiotic resistance poses a serious threat to human health. A molecular understanding of resistance strategies employed by bacteria is obligatory to generate less-susceptible antibiotics. Albicidin is a highly potent antibacterial compound synthesized by the plant-pathogenic bacterium Xanthomonas albilineans. The drug-binding protein AlbA confers albicidin resistance to Klebsiella oxytoca. Here we show that AlbA binds albicidin with low nanomolar affinity resulting in full inhibition of its antibacterial activity. We report on the crystal structure of the drug-binding domain of AlbA (AlbAS) in complex with albicidin. Both α-helical repeat domains of AlbAS are required to cooperatively clamp albicidin, which is unusual for drug-binding proteins of the MerR family. Structure-guided NMR binding studies employing synthetic albicidin derivatives give valuable information about ligand promiscuity of AlbAS. Our findings thus expand the general understanding of antibiotic resistance mechanisms and support current drug-design efforts directed at more effective albicidin analogs.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Microbial , Klebsiella oxytoca/chemistry , Xanthomonas/chemistry , Anti-Bacterial Agents/pharmacology , Carrier Proteins/metabolism , Crystallization , Crystallography, X-Ray , Escherichia coli/metabolism , Klebsiella oxytoca/drug effects , Ligands , Magnetic Resonance Spectroscopy , Organic Chemicals/chemistry , Protein Binding , Protein Domains , Protein Structure, Secondary , Synchrotrons , Temperature , Xanthomonas/drug effects
17.
J Biol Chem ; 293(35): 13636-13649, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29997257

ABSTRACT

The classical microbial strategy for depolymerization of ß-mannan polysaccharides involves the synergistic action of at least two enzymes, endo-1,4-ß-mannanases and ß-mannosidases. In this work, we describe the first exo-ß-mannanase from the GH2 family, isolated from Xanthomonas axonopodis pv. citri (XacMan2A), which can efficiently hydrolyze both manno-oligosaccharides and ß-mannan into mannose. It represents a valuable process simplification in the microbial carbon uptake that could be of potential industrial interest. Biochemical assays revealed a progressive increase in the hydrolysis rates from mannobiose to mannohexaose, which distinguishes XacMan2A from the known GH2 ß-mannosidases. Crystallographic analysis indicates that the active-site topology of XacMan2A underwent profound structural changes at the positive-subsite region, by the removal of the physical barrier canonically observed in GH2 ß-mannosidases, generating a more open and accessible active site with additional productive positive subsites. Besides that, XacMan2A contains two residue substitutions in relation to typical GH2 ß-mannosidases, Gly439 and Gly556, which alter the active site volume and are essential to its mode of action. Interestingly, the only other mechanistically characterized mannose-releasing exo-ß-mannanase so far is from the GH5 family, and its mode of action was attributed to the emergence of a blocking loop at the negative-subsite region of a cleft-like active site, whereas in XacMan2A, the same activity can be explained by the removal of steric barriers at the positive-subsite region in an originally pocket-like active site. Therefore, the GH2 exo-ß-mannanase represents a distinct molecular route to this rare activity, expanding our knowledge about functional convergence mechanisms in carbohydrate-active enzymes.


Subject(s)
Bacterial Proteins/metabolism , Xanthomonas/metabolism , beta-Mannosidase/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Kinetics , Mannans/metabolism , Mannose/metabolism , Models, Molecular , Protein Conformation , Scattering, Small Angle , Sequence Alignment , Substrate Specificity , X-Ray Diffraction , Xanthomonas/chemistry , Xanthomonas/enzymology , beta-Mannosidase/chemistry
18.
Biochemistry ; 57(18): 2601-2605, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29664615

ABSTRACT

The heat shock protein 90 (Hsp90) family plays a critical role in maintaining the homeostasis of the intracellular environment for human and prokaryotic cells. Hsp90 orthologues were identified as important target proteins for cancer and plant disease therapies. It was shown that gambogic acid (GBA) has the potential to inhibit human Hsp90. However, it is unknown whether it is also able to act on the bacterial high-temperature protein (HtpG) analogue. In this work, we screened GBA and nine other novel potential Hsp90 inhibitors using a miniaturized high-throughput protein microarray-based assay and found that GBA shows an inhibitory effect on different Hsp90s after dissimilarity analysis of the protein sequence alignment. The dissociation constant of GBA and HtpG Xanthomonas (XcHtpG) computed from microscale thermophoresis is 682.2 ± 408 µM in the presence of ATP, which is indispensable for the binding of GBA to XcHtpG. Our results demonstrate that GBA is a promising Hsp90/HtpG inhibitor. The work further demonstrates that our assay concept has great potential for finding new potent Hsp/HtpG inhibitors.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Xanthones/pharmacology , Adenosine Triphosphate/chemistry , Amino Acid Sequence/genetics , Bacterial Proteins/chemistry , Fluorescence , HSP90 Heat-Shock Proteins/chemistry , Hot Temperature , Humans , Protein Binding/drug effects , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthones/chemistry
19.
Methods Mol Biol ; 1767: 19-63, 2018.
Article in English | MEDLINE | ID: mdl-29524128

ABSTRACT

The completion of genome, epigenome, and transcriptome mapping in multiple cell types has created a demand for precision biomolecular tools that allow researchers to functionally manipulate DNA, reconfigure chromatin structure, and ultimately reshape gene expression patterns. Epigenetic editing tools provide the ability to interrogate the relationship between epigenetic modifications and gene expression. Importantly, this information can be exploited to reprogram cell fate for both basic research and therapeutic applications. Three different molecular platforms for epigenetic editing have been developed: zinc finger proteins (ZFs), transcription activator-like effectors (TALEs), and the system of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins. These platforms serve as custom DNA-binding domains (DBDs), which are fused to epigenetic modifying domains to manipulate epigenetic marks at specific sites in the genome. The addition and/or removal of epigenetic modifications reconfigures local chromatin structure, with the potential to provoke long-lasting changes in gene transcription. Here we summarize the molecular structure and mechanism of action of ZF, TALE, and CRISPR platforms and describe their applications for the locus-specific manipulation of the epigenome. The advantages and disadvantages of each platform will be discussed with regard to genomic specificity, potency in regulating gene expression, and reprogramming cell phenotypes, as well as ease of design, construction, and delivery. Finally, we outline potential applications for these tools in molecular biology and biomedicine and identify possible barriers to their future clinical implementation.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Cas Systems , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Editing/methods , Transcription Activator-Like Effectors/metabolism , Zinc Fingers , Animals , Bacterial Proteins/chemistry , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/chemistry , Genetic Loci , Genome , Humans , Models, Molecular , Transcription Activator-Like Effectors/chemistry , Xanthomonas/chemistry , Xanthomonas/metabolism
20.
Methods Mol Biol ; 1767: 89-109, 2018.
Article in English | MEDLINE | ID: mdl-29524130

ABSTRACT

Manipulation of gene expression can be facilitated by editing the genome or the epigenome. Precise genome editing is traditionally achieved by using designer nucleases which are generally exploited to eliminate a specific gene product. Upon the introduction of a site-specific DNA double-strand break (DSB) by the nuclease, endogenous DSB repair mechanisms are in turn harnessed to induce DNA sequence changes that can result in target gene inactivation. Minimal off-target effects can be obtained by endowing designer nucleases with the highly specific DNA-binding domain (DBD) derived from transcription activator-like effectors (TALEs). In contrast, epigenome editing allows gene expression control without inducing changes in the DNA sequence by specifically altering epigenetic marks, as histone tails modifications or DNA methylation patterns within promoter or enhancer regions. Importantly, this approach allows both up- and downregulation of the target gene expression, and the effect is generally reversible. TALE-based designer epigenome modifiers combine the high specificity of TALE-derived DBDs with the power of epigenetic modifier domains to induce fast and long-lasting changes in the epigenetic landscape of a target gene and control its expression. Here we provide a detailed description for the generation of TALE-based designer epigenome modifiers and of a suitable reporter cell line to easily monitor their activity.


Subject(s)
Bacterial Proteins/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Editing/methods , Transcription Activator-Like Effectors/metabolism , Xanthomonas/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Line , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Silencing , Humans , Protein Domains , Transcription Activator-Like Effectors/chemistry , Transcription Activator-Like Effectors/genetics , Transcriptome , Xanthomonas/chemistry , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...