Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.140
Filter
1.
Physiol Plant ; 176(3): e14327, 2024.
Article in English | MEDLINE | ID: mdl-38716559

ABSTRACT

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Subject(s)
Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
2.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722384

ABSTRACT

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Subject(s)
Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
3.
Appl Microbiol Biotechnol ; 108(1): 352, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819468

ABSTRACT

Fucoxanthin is a versatile substance in the food and pharmaceutical industries owing to its excellent antioxidant and anti-obesity properties. Several microalgae, including the haptophyte Pavlova spp., can produce fucoxanthin and are potential industrial fucoxanthin producers, as they lack rigid cell walls, which facilitates fucoxanthin extraction. However, the commercial application of Pavlova spp. is limited owing to insufficient biomass production. In this study, we aimed to develop a mixotrophic cultivation method to increase biomass and fucoxanthin production in Pavlova gyrans OPMS 30543X. The effects of culturing OPMS 30543X with different organic carbon sources, glycerol concentrations, mixed-nutrient conditions, and light intensities on the consumption of organic carbon sources, biomass production, and fucoxanthin accumulation were analyzed. Several organic carbon sources, such as glycerol, glucose, sucrose, and acetate, were examined, revealing that glycerol was well-consumed by the microalgae. Biomass and fucoxanthin production by OPMS 30543X increased in the presence of 10 mM glycerol compared to that observed without glycerol. Metabolomic analysis revealed higher levels of the metabolites related to the glycolytic, Calvin-Benson-Bassham, and tricarboxylic acid cycles under mixotrophic conditions than under autotrophic conditions. Cultures grown under mixotrophic conditions with a light intensity of 100 µmol photons m-2 s-1 produced more fucoxanthin than autotrophic cultures. Notably, the amount of fucoxanthin produced (18.9 mg/L) was the highest reported thus far for Pavlova species. In conclusion, the use of mixotrophic culture is a promising strategy for increasing fucoxanthin production in Pavlova species. KEY POINTS: • Glycerol enhances biomass and fucoxanthin production in Pavlova gyrans • Metabolite levels increase under mixotrophic conditions • Mixotrophic conditions and medium-light intensity are appropriate for P. gyrans.


Subject(s)
Biomass , Glycerol , Haptophyta , Xanthophylls , Xanthophylls/metabolism , Glycerol/metabolism , Haptophyta/metabolism , Haptophyta/growth & development , Haptophyta/radiation effects , Microalgae/metabolism , Microalgae/growth & development , Culture Media/chemistry , Carbon/metabolism , Light , Metabolomics
4.
Bioresour Technol ; 402: 130834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740311

ABSTRACT

Effective metabolic regulators play an essential role in regulating astaxanthin biosynthesis in Phaffia rhodozyma. In this study, it was found that 5 mM glutamate increased the astaxanthin yield and biomass of P. rhodozyma D3 to 22.34 mg/L and 6.12 g/L, which were 1.22 and 1.33 times higher than the control group, respectively. Meanwhile, glucose uptake was increased and the level of reactive oxygen species (ROS) was reduced with 5 mM glutamate. To further explore the interrelationship between glutamate and astaxanthin synthesis, the energy metabolism of P. rhodozyma D3 with and without glutamate was analysed. Glutamate promoted the Embden-Meyerhof-Parnas pathway (EMP) metabolic flux, modulated the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP), activated the ornithine cycle and purine metabolism, and provided more ATP and NADPH for astaxanthin accumulation. This study clarified the possible mechanism by which glutamate promoted astaxanthin accumulation in P. rhodozyma.


Subject(s)
Biomass , Energy Metabolism , Glutamic Acid , Xanthophylls , Xanthophylls/metabolism , Glutamic Acid/metabolism , Energy Metabolism/drug effects , Reactive Oxygen Species/metabolism , Glucose/metabolism
5.
Plant Physiol Biochem ; 211: 108697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705045

ABSTRACT

Dunaliella salina, a microalga that thrives under high-saline conditions, is notable for its high ß-carotene content and the absence of a polysaccharide cell wall. These unique characteristics render it a prime candidate as a cellular platform for astaxanthin production. In this study, our initial tests in an E. coli revealed that ß-ring-4-dehydrogenase (CBFD) and 4-hydroxy-ß-ring-4-dehydrogenase (HBFD) genes from Adonis aestivalis outperformed ß-carotene hydroxylase (BCH) and ß-carotene ketolase (BKT) from Haematococcus pluvialis counterparts by two-fold in terms of astaxanthin biosynthesis efficiency. Subsequently, we utilized electroporation to integrate either the BKT gene or the CBFD and HBFD genes into the genome of D. salina. In comparison to wild-type D. salina, strains transformed with BKT or CBFD and HBFD exhibited inhibited growth, underwent color changes to shades of red and yellow, and saw a nearly 50% decline in cell density. HPLC analysis confirmed astaxanthin synthesis in engineered D. salina strains, with CBFD + HBFD-D. salina yielding 134.88 ± 9.12 µg/g of dry cell weight (DCW), significantly higher than BKT-D. salina (83.58 ± 2.40 µg/g). This represents the largest amount of astaxanthin extracted from transgenic D. salina, as reported to date. These findings have significant implications, opening up new avenues for the development of specialized D. salina-based microcell factories for efficient astaxanthin production.


Subject(s)
Xanthophylls , Xanthophylls/metabolism , Chlorophyceae/metabolism , Chlorophyceae/genetics , Biosynthetic Pathways/genetics , Chlorophyta/metabolism , Chlorophyta/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Mixed Function Oxygenases , Oxygenases
6.
Sci Rep ; 14(1): 8081, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582923

ABSTRACT

Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher ß-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the ß-carotene hydroxylase gene crtZ and ß-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-ß-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.


Subject(s)
Carotenoids , Corynebacterium glutamicum , Carotenoids/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Xanthophylls/metabolism , beta Carotene/metabolism , Metabolic Engineering/methods
7.
Mar Drugs ; 22(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667802

ABSTRACT

Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.


Subject(s)
Diatoms , Oxidoreductases , Xanthophylls , Diatoms/genetics , Xanthophylls/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques/methods , Carotenoids/metabolism , Microalgae/genetics , Mutation
8.
Plant Physiol Biochem ; 210: 108622, 2024 May.
Article in English | MEDLINE | ID: mdl-38677187

ABSTRACT

Soil cadmium (Cd) contamination poses a significant threat to global food security and the environment. Astaxanthin (AX), a potent biological antioxidant belonging to the carotenoid group, has been demonstrated to confer tolerance against diverse abiotic stresses in plants. This study investigated the potential of AX in mitigating Cd-induced damage in wheat seedlings. Morpho-physiological, ultrastructural, and biochemical analyses were conducted to evaluate the impact of AX on Cd-exposed wheat seedlings. Illumina-based gene expression profiling was employed to uncover the molecular mechanisms underlying the protective effects of AX. The addition of 100 µM AX alleviated Cd toxicity by enhancing various parameters: growth, photosynthesis, carotenoid content, and total antioxidant capacity (T-AOC), while reducing Cd accumulation, malondialdehyde (MDA), and hydrogen peroxide (H2O2) levels. RNA sequencing analysis revealed differentially expressed genes associated with Cd uptake and carotenoid metabolism, such as zinc/iron permease (ZIP), heavy metal-associated protein (HMA), 3-beta hydroxysteroid dehydrogenase/isomerase (3-beta-HSD), and thiolase. These findings suggest that AX enhances Cd tolerance in wheat seedlings by promoting the expression of detoxification and photosynthesis-related genes. This research offers valuable insights into the potential use of AX to address Cd contamination in agricultural systems, highlighting the significance of antioxidant supplementation in plant stress management.


Subject(s)
Antioxidants , Cadmium , Carotenoids , Triticum , Xanthophylls , Triticum/metabolism , Triticum/drug effects , Triticum/genetics , Xanthophylls/metabolism , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Seedlings/drug effects , Seedlings/metabolism
9.
J Agric Food Chem ; 72(18): 10459-10468, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38666490

ABSTRACT

Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Vitis , Xanthophylls , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Xanthophylls/metabolism , Vitis/metabolism , Vitis/microbiology , Vitis/chemistry , Oxidation-Reduction , Zeaxanthins/metabolism , Zeaxanthins/biosynthesis , NADP/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics
10.
Food Funct ; 15(9): 4805-4817, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38563411

ABSTRACT

Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.


Subject(s)
Feces , Fermentation , Gastrointestinal Microbiome , Xanthophylls , Gastrointestinal Microbiome/drug effects , Humans , Xanthophylls/metabolism , Xanthophylls/pharmacology , Feces/microbiology , Male , Adult , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics
11.
Bioresour Technol ; 401: 130714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641299

ABSTRACT

This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.


Subject(s)
Biomass , Chlorella , Macular Pigment , Microalgae , Microalgae/metabolism , Chlorella/metabolism , Chlorella/growth & development , Macular Pigment/metabolism , Lutein/metabolism , Light , Cell Culture Techniques/methods , Zeaxanthins/metabolism , Xanthophylls/metabolism
12.
Food Res Int ; 176: 113841, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163732

ABSTRACT

Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.


Subject(s)
Chlorophyceae , Microalgae , Microalgae/metabolism , Xanthophylls/metabolism
13.
Biochim Biophys Acta Bioenerg ; 1865(2): 149030, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38163538

ABSTRACT

Diatoms, a major group of algae, account for about a quarter of the global primary production on Earth. These photosynthetic organisms face significant challenges due to light intensity variations in their underwater habitat. To avoid photodamage, they have developed very efficient non-photochemical quenching (NPQ) mechanisms. These mechanisms originate in their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complexes. Spectroscopic studies of NPQ in vivo are often hindered by strongly overlapping signals from the photosystems and their antennae. Fortunately, in vitro FCP aggregates constitute a useful model system to study fluorescence (FL) quenching in diatoms. In this work, we present streak-camera FL measurements on FCPa and FCPb complexes, isolated from a centric diatom Cyclotella meneghiniana, and their aggregates. We find that spectra of non-aggregated FCP are dominated by a single fluorescing species, but the FL spectra of FCP aggregates additionally contain contributions from a redshifted emissive state. We relate this red state to a charge transfer state between chlorophyll c and chlorophyll a molecules. The FL quenching, on the other hand, is due to an additional dark state that involves incoherent energy transfer to the fucoxanthin carotenoids. Overall, the global picture of energy transfer and quenching in FCP aggregates is very similar to that of major light-harvesting complexes in higher plants (LHCII), but microscopic details between FCPs and LHCIIs differ significantly.


Subject(s)
Chlorophyll Binding Proteins , Diatoms , Chlorophyll Binding Proteins/chemistry , Light-Harvesting Protein Complexes/metabolism , Chlorophyll A/metabolism , Xanthophylls/metabolism , Diatoms/metabolism
14.
Mol Biotechnol ; 66(3): 402-423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37270443

ABSTRACT

The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.


Subject(s)
Chlorophyceae , Microalgae , Xanthophylls/metabolism , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Microalgae/metabolism
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123731, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064963

ABSTRACT

The health benefits of astaxanthin (AST) are related to its geometric isomers. Generally, functional activity is realized by the interactions between active substances and transporters. Hereto, bovine serum albumin (BSA), as a model-binding protein and transporter, is able to recognize and transport isomers of active substances through binding with them. However, differences in the binding mechanism of isomers to BSA may affect the functional activities of isomers through the "binding-transport-activity" chain reaction. Thus, this study sought to elucidate the interactions between AST geometrical isomers and BSA using multi-spectroscopy, surface plasmon resonance and molecular docking. The results showed that Z-AST displayed more interacting amino acid residues and lower thermodynamic parameters than all-E-AST. Meanwhile, the order of binding affinity to BSA was 13Z-AST (1.56 × 10-7 M) > 9Z-AST (2.70 × 10-7 M) > all-E-AST (4.01 × 10-7 M), indicating that Z-AST possessed stronger binding ability to BSA. Moreover, AST isomers were located at the junction between subdomains ⅡA and ⅢA of BSA, and showed the same interaction forces (hydrogen bond and van der Waals force) as well as kinetic processes (slow combination, slow dissociation). These interaction parameters provide valuable insights into their pharmacokinetics in vivo, and it was of great significance to explain the potential differences among AST isomers in functional activities.


Subject(s)
Serum Albumin, Bovine , Xanthophylls , Molecular Docking Simulation , Serum Albumin, Bovine/chemistry , Spectrum Analysis , Xanthophylls/metabolism , Thermodynamics , Protein Binding , Spectrometry, Fluorescence , Binding Sites , Spectrophotometry, Ultraviolet
16.
New Phytol ; 241(4): 1574-1591, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062856

ABSTRACT

Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.


Subject(s)
Diatoms , Heat Shock Transcription Factors/metabolism , Diatoms/genetics , Diatoms/metabolism , Xanthophylls/metabolism , Carotenoids/metabolism
17.
Bioresour Technol ; 393: 130001, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37956949

ABSTRACT

The economical way of Haematococcus pluvialis farming is to simultaneously achieve biomass, astaxanthin and lipid using less expensive chemicals. This paper explores the role of exogenous arginine in promoting growth and astaxanthin accumulation under stressful conditions. The application of arginine exerts a synergic effect on biomass, astaxanthin and lipid by improving carbon utilization, activating the arginine pathway and regulating carotenoid and lipid-related genes. Genes related to arginine catabolism, such as ADC, OCT, ASS1, NOS, and OAT, were up-regulated at both the cultivation and astaxanthin induction stages, signifying their importance in both growth and astaxanthin synthesis. Furthermore, transcriptome analysis revealed that arginine up-regulated transcription levels of genes involved carbon fixing, lipid biosynthesis, pyruvate metabolism, carotenoid, tricarboxylic acid cycle, and arginine and proline metabolism. The results provide a significant mechanism and applicability of using exogenous arginine and high light to stimulate bioproducts from Haematococcus pluvialis.


Subject(s)
Chlorophyceae , Biomass , Chlorophyceae/metabolism , Xanthophylls/metabolism , Lipids , Carbon
18.
Biochim Biophys Acta Biomembr ; 1866(1): 184241, 2024 01.
Article in English | MEDLINE | ID: mdl-37866690

ABSTRACT

Carotenoids are pigments of diverse functions ranging from coloration over light-harvesting to photoprotection. Yet, the number of carotenoid-binding proteins, which mobilize these pigments in physiological media, is limited, and the mechanisms of carotenoid mobilization are still not well understood. The same applies for the determinants of carotenoid uptake from membranes into carotenoproteins, especially regarding the dependence on the chemical properties of membrane lipids. Here, we investigate xanthophyll uptake capacity and kinetics of a paradigmatic carotenoid-binding protein, the homolog of the Orange Carotenoid Protein's C-terminal domain from Anabaena sp. PCC 7120 (AnaCTDH), using liposomes formed from defined lipid species and loaded with canthaxanthin (CAN) and echinenone (ECN), respectively. Phospholipids with different chain length and degree of saturation were investigated. The composition of carotenoid-loaded liposomes directly affected the incorporation yield and storage ratio of CAN and ECN as well as the rate of carotenoid uptake by AnaCTDH. Generally, saturated PC lipids were identified as unsuitable, and a high phase transition temperature of the lipids negatively affected the carotenoid incorporation and storage yield. For efficient carotenoid transfer, the velocity increases with increasing chain length or membrane thickness. An average transfer yield of 93 % and 43 % were obtained for the formation of AnaCTDH(CAN) and AnaCTDH(ECN) holoproteins, respectively. In summary, the most suitable lipids for the formation of AnaCTDH(CAN/ECN) holoproteins by carotenoid transfer from artificial liposomes are phosphatidylcholine (18:1) and phosphatidylglycerol (14:0). Thus, these two lipids provide the best conditions for further investigation of lipid-protein interaction and the carotenoid uptake process.


Subject(s)
Carotenoids , Liposomes , Liposomes/chemistry , Carotenoids/metabolism , Xanthophylls/chemistry , Xanthophylls/metabolism , Lutein/chemistry , Canthaxanthin , Membrane Lipids/metabolism
19.
Physiol Plant ; 175(5): e13998, 2023.
Article in English | MEDLINE | ID: mdl-37882279

ABSTRACT

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Subject(s)
Arabidopsis , Light , Oxidoreductases/metabolism , Xanthophylls/metabolism , Zeaxanthins/metabolism , Photosystem II Protein Complex/metabolism , Lutein/metabolism , Arabidopsis/metabolism , Acclimatization , Chlorophyll/metabolism , Photosynthesis
20.
Bioresour Technol ; 389: 129802, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783237

ABSTRACT

This study explored the use of taurine in enhancing the production and bio-accessibility of astaxanthin in Haematococcus pluvialis, which typically forms a secondary cell wall hindering astaxanthin extraction. The biomass of taurine-treated group significantly increased by 18%, and astaxanthin yield surged by 34% in comparison to the control group. Without cell disruption, astaxanthin recovery from thin-walled cells in the taurine-treated group, using dimethyl sulfoxide and ethanol as extraction reagents, was 97% and 75%, respectively, which were 30-fold higher than those of thick-walled cells in the control group. Additionally, the cell fragmentation rate increased by 86% in taurine-treated group relative to the control group. Comparative transcriptome analysis identified taurine-induced upregulation of genes involved in the astaxanthin biosynthesis pathway and downregulation of those associated with secondary cell wall synthesis. This study thus offers an innovative taurine-based strategy to enhance astaxanthin production and bio-accessibility while shedding light on the mechanisms driving this process.


Subject(s)
Chlorophyceae , Chlorophyceae/metabolism , Xanthophylls/metabolism , Biomass , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...