Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.687
Filter
1.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801268

ABSTRACT

Non-small cell lung cancer (NSCLC) is a highly lethal disease with a complex and heterogeneous tumor microenvironment. Currently, common animal models based on subcutaneous inoculation of cancer cell suspensions do not recapitulate the tumor microenvironment in NSCLC. Herein we describe a murine orthotopic lung cancer xenograft model that employs the intrapulmonary inoculation of three-dimensional multicellular spheroids (MCS). Specifically, fluorescent human NSCLC cells (A549-iRFP) were cultured in low-attachment 96-well microplates with collagen for 3 weeks to form MCS, which were then inoculated intercostally into the left lung of athymic nude mice to establish the orthotopic lung cancer model. Compared with the original A549 cell line, MCS of the A549-iRFP cell line responded similarly to anticancer drugs. The long-wavelength fluorescent signal of the A549-iRFP cells correlated strongly with common markers of cancer cell growth, including spheroid volume, cell viability, and cellular protein level, thus allowing dynamic monitoring of the cancer growth in vivo by fluorescent imaging. After inoculation into mice, the A549-iRFP MCS xenograft reliably progressed through phases closely resembling the clinical stages of NSCLC, including the expansion of the primary tumor, the emergence of neighboring secondary tumors, and the metastases of cancer cells to the contralateral right lung and remote organs. Moreover, the model responded to the benchmark antilung cancer drug, cisplatin with the anticipated toxicity and slower cancer progression. Therefore, this murine orthotopic xenograft model of NSCLC would serve as a platform to recapitulate the disease's progression and facilitate the development of potential anticancer drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice, Nude , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Humans , Mice , Xenograft Model Antitumor Assays/methods , Disease Progression , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Disease Models, Animal , A549 Cells , Neoplasm Transplantation
2.
Biomed Pharmacother ; 175: 116736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739992

ABSTRACT

AIMS: The xanthone dimer 12-O-deacetyl-phomoxanthone A (12-ODPXA) was extracted from the secondary metabolites of the endophytic fungus Diaporthe goulteri. The 12-ODPXA compound exhibited anticancer properties in murine lymphoma; however, the anti-ovarian cancer (OC) mechanism has not yet been explored. Therefore, the present study evaluated whether 12-ODPXA reduces OC cell proliferation, metastasis, and invasion by downregulating pyruvate dehydrogenase kinase (PDK)4 expression. METHODS: Cell counting kit-8, colony formation, flow cytometry, wound healing, and transwell assays were performed to examine the effects of 12-ODPXA on OC cell proliferation, apoptosis, migration, and invasion. Transcriptome analysis was used to predict the changes in gene expression. Protein expression was determined using western blotting. Glucose, lactate, and adenosine triphosphate (ATP) test kits were used to measure glucose consumption and lactate and ATP production, respectively. Zebrafish xenograft models were constructed to elucidate the anti-OC effects of 12-ODPXA. RESULTS: The 12-ODPXA compound inhibited OC cell proliferation, migration, invasion, and glycolysis while inducing cell apoptosis via downregulation of PDK4. In vivo experiments showed that 12-ODPXA suppressed tumor growth and migration in zebrafish. CONCLUSION: Our data demonstrate that 12-ODPXA inhibits ovarian tumor growth and metastasis by downregulating PDK4, revealing the underlying mechanisms of action of 12-ODPXA in OC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Down-Regulation , Ovarian Neoplasms , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Xanthones , Zebrafish , Animals , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Humans , Xanthones/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Xenograft Model Antitumor Assays/methods , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis , Neoplasm Invasiveness
3.
Respir Res ; 25(1): 215, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764025

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of lung cancer patients with mutated EGFR. However, the efficacy of EGFR-TKIs in wild-type EGFR tumors has been shown to be marginal. Methods that can sensitize EGFR-TKIs to EGFR wild-type NSCLC remain rare. Hence, we determined whether combination treatment can maximize the therapeutic efficacy of EGFR-TKIs. METHODS: We established a focused drug screening system to investigate candidates for overcoming the intrinsic resistance of wild-type EGFR NSCLC to EGFR-TKIs. Molecular docking assays and western blotting were used to identify the binding mode and blocking effect of the candidate compounds. Proliferation assays, analyses of drug interactions, colony formation assays, flow cytometry and nude mice xenograft models were used to determine the effects and investigate the molecular mechanism of the combination treatment. RESULTS: Betulinic acid (BA) is effective at targeting EGFR and synergizes with EGFR-TKIs (gefitinib and osimertinib) preferentially against wild-type EGFR. BA showed inhibitory activity due to its interaction with the ATP-binding pocket of EGFR and dramatically enhanced the suppressive effects of EGFR-TKIs by blocking EGFR and modulating the EGFR-ATK-mTOR axis. Mechanistic studies revealed that the combination strategy activated EGFR-induced autophagic cell death and that the EGFR-AKT-mTOR signaling pathway was essential for completing autophagy and cell cycle arrest. Activation of the mTOR pathway or blockade of autophagy by specific chemical agents markedly attenuated the effect of cell cycle arrest. In vivo administration of the combination treatment caused marked tumor regression in the A549 xenografts. CONCLUSIONS: BA is a potential wild-type EGFR inhibitor that plays a critical role in sensitizing EGFR-TKI activity. BA combined with an EGFR-TKI effectively suppressed the proliferation and survival of intrinsically resistant lung cancer cells via the inhibition of EGFR as well as the induction of autophagy-related cell death, indicating that BA combined with an EGFR-TKI may be a potential therapeutic strategy for overcoming the primary resistance of wild-type EGFR-positive lung cancers.


Subject(s)
Autophagy , Betulinic Acid , Carcinoma, Non-Small-Cell Lung , Drug Synergism , ErbB Receptors , Lung Neoplasms , Pentacyclic Triterpenes , Protein Kinase Inhibitors , Animals , Humans , Mice , A549 Cells , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Gefitinib/pharmacology , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Pyrimidines , Signal Transduction/drug effects , Triterpenes/pharmacology , Xenograft Model Antitumor Assays/methods
4.
Methods Mol Biol ; 2806: 31-40, 2024.
Article in English | MEDLINE | ID: mdl-38676794

ABSTRACT

Patient-derived xenograft (PDX) modeling is a valuable tool for the study of leukemia pathogenesis, progression, and therapy response. Engraftment of human leukemia cells occurs following injection into the tail vein (or retro-orbital vein) of preconditioned immunocompromised mice. Injected mice are maintained in a sterile and supportive housing environment until leukemia engraftment is observed, at which time studies such as drug treatments or leukemia sampling can occur. Here, we outline a method for generating PDXs from Acute Myeloid Leukemia (AML) patient samples using tail vein injection; however it can also be readily applied to T- and B- Acute Lymphoblastic Leukemia (ALL) samples.


Subject(s)
Disease Models, Animal , Animals , Humans , Mice , Xenograft Model Antitumor Assays/methods , Leukemia, Myeloid, Acute/pathology , Heterografts , Leukemia/pathology
5.
Methods Mol Biol ; 2806: 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38676791

ABSTRACT

Patient-derived xenografts (PDXs) represent a critical advancement in preclinical cancer research, wherein human tumor samples are implanted into animal models for evaluation of therapeutic responses. PDXs have emerged as indispensable tools in translational cancer research, facilitating investigation into tumor microenvironments and personalized medicine. This chapter elucidates the historical evolution of PDXs, from early attempts in the eighteenth century to contemporary immunocompromised host models that enhance engraftment success.


Subject(s)
Immunocompromised Host , Translational Research, Biomedical , Humans , Animals , Translational Research, Biomedical/methods , Disease Models, Animal , Mice , Xenograft Model Antitumor Assays/methods , Neoplasms/immunology , Neoplasms/pathology , Heterografts , History, 20th Century , Precision Medicine/methods , Tumor Microenvironment/immunology , History, 21st Century
6.
Methods Mol Biol ; 2806: 55-74, 2024.
Article in English | MEDLINE | ID: mdl-38676796

ABSTRACT

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.


Subject(s)
Neuroblastoma , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Neuroblastoma/pathology , Neuroblastoma/genetics , Rhabdomyosarcoma/pathology , Xenograft Model Antitumor Assays/methods , Child , Disease Models, Animal , Heterografts , Precision Medicine/methods , Cell Line, Tumor
7.
Methods Mol Biol ; 2806: 75-90, 2024.
Article in English | MEDLINE | ID: mdl-38676797

ABSTRACT

The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Animals , Humans , Mice , Brain Neoplasms/pathology , Child , Xenograft Model Antitumor Assays/methods , Medulloblastoma/pathology , Glioma/pathology , Glioblastoma/pathology , Heterografts
8.
Methods Mol Biol ; 2806: 101-115, 2024.
Article in English | MEDLINE | ID: mdl-38676799

ABSTRACT

Patient-Derived Xenografts (PDXs) are established by implanting a fragment of a patient tumor into rodents either subcutaneously or orthotopically. PDX models faithfully recapitulate the histologic and molecular profile of the donor patient's cancer and are regarded as authentic preclinical models for drug testing, understanding of tumor biology and biomarker discovery. This Chapter describes the detailed method for establishing robust PDXs for endometrial cancer and provide important notes for users of the protocol to consider during PDXs development.


Subject(s)
Endometrial Neoplasms , Xenograft Model Antitumor Assays , Endometrial Neoplasms/pathology , Female , Humans , Animals , Mice , Xenograft Model Antitumor Assays/methods , Disease Models, Animal , Heterografts
9.
Methods Mol Biol ; 2806: 41-53, 2024.
Article in English | MEDLINE | ID: mdl-38676795

ABSTRACT

Patient-derived orthotopic xenograft (PDOX) mouse models are considered the gold standard for evidence-based preclinical research in pediatric neuro-oncology. This protocol describes the generation of PDOX models by intracranial implantation of human pediatric brain cancer cells into immune-deficient mice, and their continued propagation to establish cohorts of animals for preclinical research.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Animals , Brain Neoplasms/pathology , Humans , Mice , Xenograft Model Antitumor Assays/methods , Child , Neoplasm Grading , Heterografts
10.
Methods Mol Biol ; 2806: 91-100, 2024.
Article in English | MEDLINE | ID: mdl-38676798

ABSTRACT

Pancreatic cancer is associated with a high mortality rate, and there are still very few effective treatment options. Patient-derived xenografts have proven to be invaluable preclinical disease models to study cancer biology and facilitate testing of novel therapeutics. However, the severely immune-deficient mice used to generate standard models lack any functional immune system, thereby limiting their utility as a tool to investigate the tumor-immune cell interface. This chapter will outline a method for establishment of "humanized" patient-derived xenografts, which are reconstituted with human immune cells to imitate the immune-rich microenvironment of pancreatic cancer.


Subject(s)
Disease Models, Animal , Pancreatic Neoplasms , Tumor Microenvironment , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Animals , Humans , Mice , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays/methods , Heterografts , Mice, SCID
11.
Methods Mol Biol ; 2806: 187-196, 2024.
Article in English | MEDLINE | ID: mdl-38676803

ABSTRACT

Patient-derived xenograft (PDX) models play a crucial role for in vivo research. They maintain the original molecular characteristics of the human tumor and provide a more accurate tumor microenvironment, which cannot be replicated by in vitro models. This chapter describes four different transplantation methods, namely, intra-bursal, intrarenal capsule, intraperitoneal, and subcutaneous, to develop PDX models for ovarian cancer research.


Subject(s)
Disease Models, Animal , Ovarian Neoplasms , Xenograft Model Antitumor Assays , Humans , Ovarian Neoplasms/pathology , Female , Animals , Mice , Xenograft Model Antitumor Assays/methods , Tumor Microenvironment , Heterografts
12.
Methods Mol Biol ; 2806: 139-151, 2024.
Article in English | MEDLINE | ID: mdl-38676801

ABSTRACT

Cholangiocarcinoma (CCA) poses a substantial clinical hurdle as it is often detected at advanced metastatic stages with limited therapeutic options. To enhance our understanding of advanced CCA, it is imperative to establish preclinical models that faithfully recapitulate the disease's characteristics. Patient-derived xenograft (PDX) models have emerged as a valuable approach in cancer research, offering an avenue to reproduce and study the genomic, histologic, and molecular features of the original human tumors. By faithfully preserving the heterogeneity, microenvironmental interactions, and drug responses observed in human tumors, PDX models serve as highly relevant and predictive preclinical tools. Here, we present a comprehensive protocol that outlines the step-by-step process of generating and maintaining PDX models using biopsy samples from patients with advanced metastatic CCA. The protocol encompasses crucial aspects such as tissue processing, xenograft transplantation, and subsequent monitoring of the PDX models. By employing this protocol, we aim to establish a robust collection of PDX models that accurately reflect the genomic landscape, histologic diversity, and therapeutic responses observed in advanced CCA, thereby enabling improved translational research, drug development, and personalized treatment strategies for patients facing this challenging disease.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Xenograft Model Antitumor Assays , Cholangiocarcinoma/pathology , Cholangiocarcinoma/genetics , Humans , Animals , Mice , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Xenograft Model Antitumor Assays/methods , Disease Models, Animal
13.
Biochem Pharmacol ; 224: 116207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621425

ABSTRACT

Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.


Subject(s)
Abietanes , Acrylamides , Drug Resistance, Neoplasm , Lipogenesis , Lung Neoplasms , Mice, Nude , Humans , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Abietanes/pharmacology , Animals , Acrylamides/pharmacology , Lipogenesis/drug effects , Mice , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Xenograft Model Antitumor Assays/methods , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Male , Female , Indoles , Pyrimidines
14.
Biochem Pharmacol ; 224: 116217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641306

ABSTRACT

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.


Subject(s)
Antineoplastic Agents , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Humans , Protein Serine-Threonine Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Mice , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Nude , Cell Line, Tumor , Xenograft Model Antitumor Assays/methods , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Mice, Inbred BALB C , Apoptosis/drug effects , Female
15.
Biochem Pharmacol ; 224: 116220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641307

ABSTRACT

Alpha-enolase (ENO1), a multifunctional protein with carcinogenic properties, has emerged as a promising cancer biomarker because of its differential expression in cancer and normal cells. On the basis of this characteristic, we designed a cell-targeting peptide that specifically targets ENO1 and connected it with the drug doxorubicin (DOX) by aldehyde-amine condensation. A surface plasmon resonance (SPR) assay showed that the affinity for ENO1 was stronger (KD = 2.5 µM) for the resulting cell-targeting drug, DOX-P, than for DOX. Moreover, DOX-P exhibited acid-responsive capabilities, enabling precise release at the tumor site under the guidance of the homing peptide and alleviating DOX-induced cardiotoxicity. An efficacy experiment confirmed that, the targeting ability of DOX-P toward ENO1 demonstrated superior antitumor activity against colorectal cancer than that of DOX, while reducing its toxicity to cardiomyocytes. Furthermore, in vivo metabolic distribution results indicated low accumulation of DOX-P in nontumor sites, further validating its targeting ability. These results showed that the ENO1-targeted DOX-P peptide has great potential for application in targeted drug-delivery systems for colorectal cancer therapy.


Subject(s)
Antibiotics, Antineoplastic , Colorectal Neoplasms , Doxorubicin , Drug Delivery Systems , Phosphopyruvate Hydratase , Tumor Suppressor Proteins , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Phosphopyruvate Hydratase/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Animals , Tumor Suppressor Proteins/metabolism , Humans , Mice , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Drug Delivery Systems/methods , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/administration & dosage , Mice, Inbred BALB C , Mice, Nude , Male , Cell Line, Tumor , HCT116 Cells , Xenograft Model Antitumor Assays/methods , Biomarkers, Tumor
16.
Methods Mol Biol ; 2806: 9-18, 2024.
Article in English | MEDLINE | ID: mdl-38676792

ABSTRACT

Patient-derived xenografts (PDXs) have emerged as a pivotal tool in translational cancer research, addressing limitations of traditional methods and facilitating improved therapeutic interventions. These models involve engrafting human primary malignant cells or tissues into immunodeficient mice, allowing for the investigation of cancer mechanobiology, validation of therapeutic targets, and preclinical assessment of treatment strategies. This chapter provides an overview of PDXs methodology and their applications in both basic cancer research and preclinical studies. Despite current limitations, ongoing advancements in humanized xenochimeric models and autologous immune cell engraftment hold promise for enhancing PDX model accuracy and relevance. As PDX models continue to refine and extend their applications, they are poised to play a pivotal role in shaping the future of translational cancer research.


Subject(s)
Neoplasms , Xenograft Model Antitumor Assays , Humans , Animals , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/immunology , Mice , Xenograft Model Antitumor Assays/methods , Disease Models, Animal , Heterografts , Translational Research, Biomedical/methods
17.
Cells ; 12(8)2023 04 13.
Article in English | MEDLINE | ID: mdl-37190054

ABSTRACT

Human-relevant systems that mimic the 3D tumor microenvironment (TME), particularly the complex mechanisms of immuno-modulation in the tumor stroma, in a reproducible and scalable format are of high interest for the drug discovery industry. Here, we describe a novel 3D in vitro tumor panel comprising 30 distinct PDX models covering a range of histotypes and molecular subtypes and cocultured with fibroblasts and PBMCs in planar (flat) extracellular matrix hydrogels to reflect the three compartments of the TME-tumor, stroma, and immune cells. The panel was constructed in a 96-well plate format and assayed tumor size, tumor killing, and T-cell infiltration using high-content image analysis after 4 days of treatment. We screened the panel first against the chemotherapy drug Cisplatin to demonstrate feasibility and robustness, and subsequently assayed immuno-oncology agents Solitomab (CD3/EpCAM bispecific T-cell engager) and the immune checkpoint inhibitors (ICIs) Atezolizumab (anti-PDL1), Nivolumab (anti-PD1) and Ipilimumab (anti-CTLA4). Solitomab displayed a strong response across many PDX models in terms of tumor reduction and killing, allowing for its subsequent use as a positive control for ICIs. Interestingly, Atezolizumab and Nivolumab demonstrated a mild response compared to Ipilimumab in a subset of models from the panel. We later determined that PBMC spatial proximity in the assay setup was important for the PD1 inhibitor, hypothesizing that both duration and concentration of antigen exposure may be critical. The described 30-model panel represents a significant advancement toward screening in vitro models of the tumor microenvironment that include tumor, fibroblast, and immune cell populations in an extracellular matrix hydrogel, with robust and standardized high content image analysis in a planar hydrogel. The platform is aimed at rapidly screening various combinations and novel agents and forming a critical conduit to the clinic, thus accelerating drug discovery for the next generation of therapeutics.


Subject(s)
Antineoplastic Agents, Immunological , Cell Culture Techniques, Three Dimensional , Hydrogels , Tumor Microenvironment , Xenograft Model Antitumor Assays , Stromal Cells , Neoplasms/drug therapy , Humans , Immunotherapy , Xenograft Model Antitumor Assays/methods , Cell Line, Tumor , Antineoplastic Agents, Immunological/isolation & purification , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
18.
Acta Biochim Pol ; 69(1): 165-172, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35143148

ABSTRACT

Abnormal expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) is closely related to the occurrence and development of tumors, and PFKFB4 has been shown to function as a protein kinase. However, the molecular mechanisms through which PFKFB4 functions in glioblastoma (GBM) remain poorly understood. Accordingly, in this study, we assessed the roles of PFKFB4 in GBM. Compared to in adjacent tissues, PFKFB4 was highly expressed in GBM, and its expression level was negatively correlated with the overall survival time. In addition, knockdown of PFKFB4 inhibited the proliferation and invasion of GBM cells and promoted apoptosis. In a xenograft tumor model, tumor growth was inhibited by knockdown of PFKFB4 using short hairpin RNA. Further studies demonstrated that PFKFB4 is involved in regulating the AKT signaling pathway. Thus, PFKFB4 acts as a protein kinase to regulate GBM progression by activating the AKT/forkhead box O1 pathway, which may be a potential therapeutic target in GBM.


Subject(s)
Forkhead Box Protein O1/metabolism , Glioblastoma/metabolism , Phosphofructokinase-2/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Knockdown Techniques/methods , Glioblastoma/genetics , Glycolysis , Humans , Male , Mice , Phosphofructokinase-2/genetics , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays/methods
19.
Nat Commun ; 13(1): 703, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121738

ABSTRACT

Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.


Subject(s)
Cell Cycle Proteins/genetics , Neoplasms/genetics , Signal Transduction/genetics , TEA Domain Transcription Factors/genetics , Transcription Factors/genetics , rho-Associated Kinases/genetics , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics , Humans , Mice, SCID , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , TEA Domain Transcription Factors/metabolism , Transcription Factors/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays/methods , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
20.
Biochem Biophys Res Commun ; 595: 54-61, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35101664

ABSTRACT

The therapeutic effect of CAR-T is often accompanied by sCRS, which is the main obstacle to the promotion of CAR-T therapy. The JAK1/2 inhibitor ruxolitinib has recently been confirmed as clinically effective in maintaining control over sCRS, however, its mechanism remains unclear. In this study, we firstly revealed that ruxolitinib significantly inhibited the proliferation of CAR-T cells without damaging viability, and induced an efficacy-favored differentiation phenotype. Second, ruxolitinib reduced the level of cytokine release not only from CAR-T cells, but also from other cells in the immune system. Third, the cytolytic activity of CAR-T cells was restored once the ruxolitinib was removed; however, the cytokines released from the CAR-T cells maintained an inhibited state to some degree. Finally, ruxolitinib significantly reduced the proliferation rate of CAR-T cells in vivo without affecting the therapeutic efficacy after withdrawal at the appropriate dose. We demonstrated pre-clinically that ruxolitinib interferes with both CAR-T cells and the other immune cells that play an important role in triggering sCRS reactions. This work provides useful and important scientific data for clinicians on the question of whether ruxolitinib has an effect on CAR-T cell function loss causing CAR-T treatment failure when applied in the treatment of sCRS, the answer to which is of great clinical significance.


Subject(s)
Cell Proliferation/drug effects , Cytokine Release Syndrome/prevention & control , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/drug effects , Animals , Burkitt Lymphoma/complications , Burkitt Lymphoma/therapy , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy , Cytokine Release Syndrome/complications , Humans , Immunotherapy, Adoptive/methods , Janus Kinase Inhibitors/pharmacology , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...