Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.564
Filter
1.
Arq Bras Oftalmol ; 87(4): e2023, 2024.
Article in English | MEDLINE | ID: mdl-38656021

ABSTRACT

PURPOSE: To describe cellular alterations detected by impression cytology of the ocular surface in patients with xeroderma pigmentosum. The secondary objective was to assess the reliability of impression cytology in diagnosing ocular surface squamous neoplasia. METHODS: Patients with xeroderma pigmentosum underwent a single-day complete ophthalmological examination and impression cytology for ocular surface evaluation using 13 mm diameter mixed cellulose esters membrane filters and combined staining with Periodic Acid Schiff, Hematoxylin and Eosin, and Papanicolaou stains followed by microscopic analysis. The cytological findings were correlated with the clinical diagnosis. The impression cytology findings at baseline and one-year follow-up were correlated with the clinical course (no tumor, treated tumor, residual tumor recurrent tumor, new tumor). RESULTS: Of the 42 patients examined, impression cytology was performed in 62 eyes of 34 participants (65% females). The mean age of patients was 29.6 ± 17 years (range 7-62). Fifteen eyes had a clinical diagnosis of ocular surface squamous neoplasia. Impression cytology showed goblet cells (47, 75%), inflammatory cells (12, 19%), keratinization (5, 8%), and squamous metaplasia (30, 48%). Impression cytology was positive for atypical cells in 18 patients (12 with and 6 without ocular surface squamous neoplasia). The sensitivity, specificity, positive predictive value, and negative predictive value of impression cytology (at baseline) for diagnosis of ocular surface squamous neoplasia were 80%, 87%, 67%, and 93%, respectively, using clinical diagnosis of ocular surface squamous neoplasia as the reference standard. CONCLUSION: Impression cytology has a moderate positive predictive value for the diagnosis of ocular surface squamous neoplasia in patients with xeroderma pigmentosum. However, the lack of detection of atypical cells on impression cytology has a high negative predictive value for ocular surface squamous neoplasia. Integration of impression cytology in the long-term management of high-risk patients, such as patients with xeroderma pigmentosum, can avoid unnecessary diagnostic biopsies.


Subject(s)
Xeroderma Pigmentosum , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Carcinoma, Squamous Cell/pathology , Conjunctival Neoplasms/pathology , Cytodiagnosis/methods , Cytological Techniques/methods , Reproducibility of Results , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum/complications
2.
Exp Eye Res ; 243: 109901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641197

ABSTRACT

Xeroderma pigmentosum (XP) is a rare genetic disorder characterized by injury to the ocular surface due to exposure to ultraviolet (UV) radiation. UV-induced damage in the cells leads to the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts that are repaired by the NER (Nucleotide Excision Repair) pathway. Mutations in the genes coding for NER proteins, as reported in XP patients, would lead to sub-optimal damage repair resulting in clinical signs varying from photo-keratitis to cancerous lesions on the ocular surface. Here, we aimed to provide evidence for the accumulation of DNA damage and activation of DNA repair pathway proteins in the corneal cells of patients with XP. Corneal buttons of patients who underwent penetrating keratoplasty were stained to quantify DNA damage and the presence of activated DNA damage response proteins (DDR) using specific antibodies. Positive staining for pH2A.X and thymidine dimers confirmed the presence of DNA damage in the corneal cells. Positive cells were found in both control corneas and XP samples however, unlike normal tissues, positive cells were found in all cell layers of XP samples indicating that these cells were sensitive to very low levels of UV. pH2A.X-positive cells were significantly more in XP corneas (p < 0.05) indicating the presence of double strand breaks in these tissues. A positive expression of phosphorylated-forms of DDR proteins was noted in XP corneas (unlike controls) such as ataxia telangiectasia mutated/Rad-3 related proteins (ATM/ATR), breast cancer-1 and checkpoint kinases-1 and -2. Nuclear localization of XPA was noted in XP samples which co-localized (calculated using Pearson's correlation) with pATM (0.9 ± 0.007) and pATR (0.6 ± 0.053). The increased presence of these in the nucleus confirms that unresolved DNA damage was accumulating in these cells thereby leading to prolonged activation of the damage response proteins. An increase in pp53 and TUNEL positive cells in the XP corneas indicated cell death likely driven by the p53 pathway. For comparison, cultured normal corneal epithelial cells were exposed to UV-radiation and stained for DDR proteins at 3, 6 and 24 h after irradiation to quantify the time taken by cells with intact DDR pathway to repair damage. These cells, when exposed to UV showed nuclear translocation of DDR proteins at 3 and 6 h which reduced significantly by 24 h confirming that the damaged DNA was being actively repaired leading to cell survival. The persistent presence of the DDR proteins in XP corneas indicates that damage is being actively recognized and DNA replication is stalled, thereby causing accumulation of damaged DNA leading to cell death, which would explain the cancer incidence and cell loss reported in these patients.


Subject(s)
DNA Damage , DNA Repair , Pyrimidine Dimers , Ultraviolet Rays , Xeroderma Pigmentosum , Humans , Ultraviolet Rays/adverse effects , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Pyrimidine Dimers/metabolism , Keratoplasty, Penetrating , Cornea/metabolism , Cornea/pathology , Cornea/radiation effects , Female , Adult , Histones/metabolism , Male , Middle Aged , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Adolescent , Young Adult
4.
Nat Commun ; 15(1): 2518, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514641

ABSTRACT

DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.


Subject(s)
Tumor Suppressor Protein p53 , Xeroderma Pigmentosum , Animals , Humans , Mice , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Xeroderma Pigmentosum/genetics
6.
Arq Bras Oftalmol ; 87(2): e20220319, 2024.
Article in English | MEDLINE | ID: mdl-38451683

ABSTRACT

PURPOSE: To assess Meibomian gland dysfunction using meibography in patients with xeroderma pigmentosum and correlate with ocular surface changes. METHODS: This cross-sectional study evaluated patients with xeroderma pigmentosum. All patients underwent a comprehensive and standardized interview. The best-corrected visual acuity of each eye was determined. Detailed ophthalmic examination was conducted, including biomicroscopy examination of the ocular surface, Schirmer test type I, and meibography, and fundus examination was also performed when possible. Meibomian gland dysfunction was assessed by non-contact meibography using Oculus Keratograph® 5M (OCULUS Inc., Arlington, WA, USA). Saliva samples were collected using the Oragene DNA Self-collection kit (DNA Genotek Inc., Ottawa, Canada), and DNA was extracted as recommended by the manufacturer. Factors associated with abnormal meiboscores were assessed using generalized estimating equation models. RESULTS: A total of 42 participants were enrolled, and 27 patients underwent meibography. The meiboscore was abnormal in the upper eyelid in 8 (29.6%) patients and in the lower eyelid in 17 (62.9%). The likelihood of having abnormal meiboscores in the lower eyelid was 16.3 times greater than that in the upper eyelid. In the final multivariate model, age (p=0.001), mutation profile (p=0.006), and presence of ocular surface malignant tumor (OSMT) (p=0.014) remained significant for abnormal meiboscores. For a 1-year increase in age, the likelihood of abnormal meiboscores increased by 12%. Eyes with OSMT were 58.8 times more likely to have abnormal meiboscores than eyes without ocular surface malignant tumor. CONCLUSION: In the final model, age, xeroderma pigmentosum profile, previous cancer, and clinical alterations on the eyelid correlated with a meiboscore of ≥2. Meibomian gland dysfunction was common in patients with xeroderma pigmentosum, mainly in the lower eyelid. The severity of Meibomian gland dysfunction increases with age and is associated with severe eyelid changes.


Subject(s)
Eye Neoplasms , Meibomian Gland Dysfunction , Xeroderma Pigmentosum , Humans , Cross-Sectional Studies , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/diagnostic imaging , Eyelids , DNA
7.
BMC Oral Health ; 24(1): 163, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302989

ABSTRACT

BACKGROUND: Xeroderma pigmentosum (XP) is an extremely rare and severe form of photosensitivity. It is classified into types A-G or V according to the gene responsible for the disease. The progression and severity of symptoms vary depending on the type. Although dysphagia caused by decreased swallowing function and dental malposition due to stenosis of the dentition in the facial and oral regions is common, it has not been reported in detail. We report three cases of type A XP, in which central and peripheral neurological symptoms appeared early on and progressed rapidly. We describe the oral function of these patients, focusing on the swallowing function and dentition malposition. CASE PRESENTATION: Two males (27 and 25 years old) and one female (28 years old) presented with diverse neurological symptoms. We focused on the relationship between the changes in swallowing and oral functions and conditions due to decline in physical function. Some effects were observed by addressing the decline in swallowing and oral functions. In particular, a dental approach to manage the narrowing of the dentition, which was observed in all three patients, improved the swallowing and oral functions and maintained the current status of these functions. CONCLUSIONS: In type A XP, early decline in oral and swallowing functions is caused by the early decline in physical function, and it is necessary to monitor the condition at an early stage.


Subject(s)
Deglutition Disorders , Xeroderma Pigmentosum , Male , Humans , Female , Adult , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/genetics , Deglutition , Deglutition Disorders/etiology
8.
BMJ Open ; 14(2): e077741, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346891

ABSTRACT

OBJECTIVES: To determine the community's perception on the magnitude of Xeroderma pigmentosum (XP) disease and healthcare-seeking practices in Micheweni, Pemba in response to the public widespread information on the increased burden of the disease. DESIGN: Mixed-methods cross-sectional study. SETTING: Micheweni district, Pemba. PARTICIPANTS: 211 male and female adults in the household survey, three caretakers/parents of patients with XP in the case study, 20 key community leaders/influential people and health workers in in-depth interviews and 50 community members and other leaders in six focus groups. RESULTS: This study has revealed that XP disease exists in few families of which some of them have more than one child affected. The record review showed that there were a total of 17 patients who were diagnosed with the disease for the past 3 years, however only 10 were alive during the time of the survey. Findings from the community members revealed that several patients were believed to have XP disease and perceived causes include inheritance, food types, beliefs and other sociocultural practices. Stigma and discrimination were reported by caretakers and religious leaders. However, some cases believed to be XP were identified as other skin conditions when clinical examination was performed by the team of our researchers. There is a great confusion about XP and other skin diseases. CONCLUSION: The study has shown that XP affects only few families, hence termed as concentrated rather than a generalised disease. Due to the rareness of the disease, majority of people in the district are unaware of the disease, hence confusing it with other skin conditions. There is a need for the government in collaboration with other stakeholders to provide educational programme to community members about the disease to address the misconception about the magnitude of the disease.


Subject(s)
Dermatitis , Xeroderma Pigmentosum , Adult , Child , Humans , Male , Female , Xeroderma Pigmentosum/genetics , Cross-Sectional Studies , Indian Ocean Islands
9.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339024

ABSTRACT

Nucleotide excision repair (NER) is a multistep biochemical process that maintains the integrity of the genome. Unlike other mechanisms that maintain genomic integrity, NER is distinguished by two irreversible nucleolytic events that are executed by the xeroderma pigmentosum group G (XPG) and xeroderma pigmentosum group F (XPF) structure-specific endonucleases. Beyond nucleolysis, XPG and XPF regulate the overall efficiency of NER through various protein-protein interactions. The current experiments evaluated whether an environmental stressor could negatively affect the expression of Xpg (Ercc5: excision repair cross-complementing 5) or Xpf (Ercc4: excision repair cross-complementing 4) in the mammalian cochlea. Ubiquitous background noise was used as an environmental stressor. Gene expression levels for Xpg and Xpf were quantified from the cochlear neurosensory epithelium after noise exposure. Further, nonlinear cochlear signal processing was investigated as a functional consequence of changes in endonuclease expression levels. Exposure to stressful background noise abrogated the expression of both Xpg and Xpf, and these effects were associated with pathological nonlinear signal processing from receptor cells within the mammalian inner ear. Given that exposure to environmental sounds (noise, music, etc.) is ubiquitous in daily life, sound-induced limitations to structure-specific endonucleases might represent an overlooked genomic threat.


Subject(s)
Ear, Inner , Xeroderma Pigmentosum , Animals , Endonucleases/genetics , Endonucleases/metabolism , Ear, Inner/metabolism , DNA Repair , Mammals/genetics , Mammals/metabolism
10.
Orphanet J Rare Dis ; 19(1): 64, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351060

ABSTRACT

INTRODUCTION: People with Xeroderma Pigmentosum (XP) have a heightened sensitivity to ultraviolet radiation (UVR) and are advised to wear photoprotective clothing including a visor covering the face and neck. Photoprotective visors are homemade and predominately worn by children with decreasing frequency as age increases. To improve upon the current design and efficacy we were tasked with developing a prototype visor to meet patients' needs. METHODS: Adopting a codesign methodology, patients' experiences of wearing a visor and patient and carer views of emerging prototypes were explored during interviews. A thematic analysis was conducted in parallel with data collection and themes were interpreted into design cues; desirable attributes of a visor that would counteract the negative user experiences and meet the requirements described by patients and carers. The design cues guided the iterative development of prototypes by academic engineers. RESULTS: Twenty-four interviews were conducted with patients and carers. Thematic analysis resulted in the following five themes: Being safe from UVR exposure; self-consciousness; temperature effects; acoustic difficulties; and material properties. The following design cues were developed from the themes respectively; materials and design with high UVR protection; ability to customise with own headwear; ventilation to reduce steaming up; acoustic functionality to enable hearing and speech; foldable, portable, and easy to put on and take off. CONCLUSIONS: It is important to understand people's experiences of using medical devices to improve their safety, efficiency and user satisfaction. The user experience themes and design cues, informed the iterative development of low fidelity visor prototypes as part of a codesign process. These design cues and responses to the prototypes are guiding commercial manufacturing and regulatory approval. The visor can then be prescribed to patients, providing an equitable service of care.


Subject(s)
Ultraviolet Rays , Xeroderma Pigmentosum , Child , Humans , Data Collection , Emotions
11.
DNA Repair (Amst) ; 136: 103633, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422792

ABSTRACT

Inherited photosensitivity syndromes are a heterogeneous group of genetic skin disorders with tremendous phenotypic variability, characterized by photosensitivity and defective DNA repair, especially nucleotide excision repair. A cohort of 17 Iranian families with heritable photosensitivity syndromes was evaluated to identify their genetic defect. The patients' DNA was analyzed with either whole-exome sequencing or RNA sequencing (RNA-Seq). The interpretations of the genomic results were guided by genome-wide homozygosity mapping. Haplotype analysis was performed for cases with recurrent mutations. RNA-Seq, in addition to mutation detection, was also utilized to confirm the pathogenicity. Thirteen sequence variants, including six previously unreported pathogenic variants, were disclosed in 17 Iranian families, with XPC as the most common mutated gene in 10 families (59%). In one patient, RNA-Seq, as a first-tier diagnostic approach, revealed a non-canonical homozygous germline variant: XPC:c.413-9 T > A. The Sashimi plot showed skipping of exon 4 with dramatic XPC down-expression. Haplotype analysis of XPC:c.2251-1 G>C and XPC:1243 C>T in four families showed common haplotypes of 1.7 Mb and 2.6 Mb, respectively, denoting a founder effect. Lastly, two extremely rare cases were presented in this report: a homozygous UVSSA:c .1990 C>T was disclosed, and ERCC2-related cerebro-oculo-facio-skeletal (COFS) syndrome with an early childhood death. A direct comparison of our data with the results of previously reported cohorts demonstrates the international mutation landscape of DNA repair-related photosensitivity disorders, although population-specific differences were observed.


Subject(s)
Photosensitivity Disorders , Xeroderma Pigmentosum , Humans , Child, Preschool , Consanguinity , Xeroderma Pigmentosum/genetics , Extended Family , Iran , DNA-Binding Proteins/genetics , Mutation , DNA Repair , Photosensitivity Disorders/genetics , Xeroderma Pigmentosum Group D Protein , Carrier Proteins
13.
Sci Rep ; 14(1): 1117, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212351

ABSTRACT

DNA polymerase eta (Polη) is the only translesion synthesis polymerase capable of error-free bypass of UV-induced cyclobutane pyrimidine dimers. A deficiency in Polη function is associated with the human disease Xeroderma pigmentosum variant (XPV). We hereby report the case of a 60-year-old woman known for XPV and carrying a Polη Thr191Pro variant in homozygosity. We further characterize the variant in vitro and in vivo, providing molecular evidence that the substitution abrogates polymerase activity and results in UV sensitivity through deficient damage bypass. This is the first functional molecular characterization of a missense variant of Polη, whose reported pathogenic variants have thus far been loss of function truncation or frameshift mutations. Our work allows the upgrading of Polη Thr191Pro from 'variant of uncertain significance' to 'likely pathogenic mutant', bearing direct impact on molecular diagnosis and genetic counseling. Furthermore, we have established a robust experimental approach that will allow a precise molecular analysis of further missense mutations possibly linked to XPV. Finally, it provides insight into critical Polη residues that may be targeted to develop small molecule inhibitors for cancer therapeutics.


Subject(s)
Xeroderma Pigmentosum , Humans , Middle Aged , DNA Damage , Mutation, Missense , Proline/genetics , Pyrimidine Dimers , Ultraviolet Rays , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Female
14.
Phytomedicine ; 124: 155310, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215574

ABSTRACT

BACKGROUND: Renal cancer is insensitive to radiotherapy or most chemotherapies. While the loss of the XPC gene was correlated with drug resistance in colon cancer, the expression of XPC and its role in the drug resistance of renal cancer have not yet been elucidated. With the fact that natural small-molecules have been adopted in combinational therapy with classical chemotherapeutic agents to increase the drug sensitivity and reduce adverse effects, the use of herbal compounds to tackle drug-resistance in renal cancer is advocated. PURPOSE: To correlate the role of XPC gene deficiency to drug-resistance in renal cancer, and to identify natural small-molecules that can reverse drug-resistance in renal cancer via up-regulation of XPC. METHODS: IHC was adopted to analyze the XPC expression in human tumor and adjacent tissues. Clinical data extracted from The Cancer Genome Atlas (TCGA) database were further analysed to determine the relationship between XPC gene expression and tumor staging of renal cancer. Two types of XPC-KD renal cancer cell models were established to investigate the drug-resistant phenotype and screen XPC gene enhancers from 134 natural small-molecules derived from herbal plants. Furthermore, the identified XPC enhancers were verified in single or in combination with FDA-approved chemotherapy drugs for reversing drug-resistance in renal cancer using MTT cytotoxicity assay. Drug resistance gene profiling, ROS detection assay, immunocytochemistry and cell live-dead imaging assay were adopted to characterize the XPC-related drug resistant mechanism. RESULTS: XPC gene expression was significantly reduced in renal cancer tissue compared with its adjacent tissue. Clinical analysis of TCGA database also identified the downregulated level of XPC gene in renal tumor tissue of stage IV patients with cancer metastasis, which was also correlated with their lower survival rate. 6 natural small-molecules derived from herbal plants including tectorigenin, pinostilbene, d-pinitol, polygalasaponin F, atractylenolide III and astragaloside II significantly enhanced XPC expression in two renal cancer cell types. Combinational treatment of the identified natural compound with the treatment of FDA-approved drug, further confirmed the up-regulation of XPC gene expression can sensitize the two types of XPC-KD drug-resistant renal cancer cells towards the FDA-approved drugs. Mechanistic study confirmed that GSTP1/ROS axis was activated in drug resistant XPC-KD renal cancer cells. CONCLUSION: XPC gene deficiency was identified in patient renal tumor samples, and knockdown of the XPC gene was correlated with a drug-resistant phenotype in renal cancer cells via activation of the GSTP1/ROS axis. The 6 identified natural small molecules were confirmed to have drug sensitizing effects via upregulation of the XPC gene. Therefore, the identified active natural small molecules may work as an adjuvant therapy for circumventing the drug-resistant phenotype in renal cancer via enhancement of XPC expression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Xeroderma Pigmentosum , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Reactive Oxygen Species , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Drug Resistance
15.
Int J Dermatol ; 63(1): 59-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964400

ABSTRACT

BACKGROUND: Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder presenting with an inability to repair UV-induced DNA damage. This can lead to the development of neoplasms affecting multiple organ systems, with onset often in childhood. Unfortunately, no cure currently exists for XP, and management strategies focus on sun protection and early intervention for malignancies. Although most skin problems in XP patients are UV induced, various oral lesions are also described. However, the literature has not extensively characterized the oral manifestations and their prognostic significance. METHODS: We conducted a comprehensive review to evaluate the prevalence and nature of oral mucosal lesions in pediatric XP patients. RESULTS: Our literature search yielded 130 pediatric XP patients with oral involvement and 210 associated tumoral or non-tumoral lesions. Squamous cell carcinoma was the most common type of oral mucosal tumor reported, with other malignancies including basal cell carcinoma, melanoma, angiosarcoma, fibrosarcoma, and trichilemmal carcinoma. CONCLUSION: Given the potential morbidity and mortality associated with oral mucosal tumors in XP patients, our study aims to raise awareness of these manifestations. Early diagnosis and treatment are crucial for managing these lesions effectively, and routine oral exams should be considered a critical component of dermatological evaluations for XP patients, especially in the pediatric age group.


Subject(s)
Carcinoma, Basal Cell , Melanoma , Mouth Neoplasms , Skin Neoplasms , Xeroderma Pigmentosum , Humans , Child , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/genetics , Skin Neoplasms/diagnosis , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Mouth Mucosa/pathology , Carcinoma, Basal Cell/pathology , Melanoma/complications , Mouth Neoplasms/etiology , Mouth Neoplasms/therapy , DNA Repair
16.
Pediatr Dermatol ; 41(1): 150-152, 2024.
Article in English | MEDLINE | ID: mdl-37667072

ABSTRACT

Xeroderma pigmentosum (XP), a heterogeneous genodermatoses, has a variable clinical spectrum ranging from mild freckling and photosensitivity to severe skeletal and neurological abnormalities and cutaneous malignancies. Herein, we present the case of a 4-year-old boy with XP group G who presented with a pellagroid rash.


Subject(s)
Exanthema , Skin Neoplasms , Xeroderma Pigmentosum , Male , Humans , Child, Preschool , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/pathology , Exanthema/etiology
17.
Environ Mol Mutagen ; 65 Suppl 1: 72-81, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37545038

ABSTRACT

DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.


Subject(s)
Excision Repair , Xeroderma Pigmentosum , Humans , DNA Repair/genetics , Xeroderma Pigmentosum/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA Damage/genetics , DNA/genetics , Nucleotides , Transcription, Genetic
18.
Photochem Photobiol ; 100(1): 4-18, 2024.
Article in English | MEDLINE | ID: mdl-37926965

ABSTRACT

Xeroderma pigmentosum (XP) variant cells are deficient in the translesion synthesis (TLS) DNA polymerase Polη (eta). This protein contributes to DNA damage tolerance, bypassing unrepaired UV photoproducts and allowing S-phase progression with minimal delay. In the absence of Polη, backup polymerases perform TLS of UV lesions. However, which polymerase plays this role in human cells remains an open question. Here, we investigated the potential role of Polι (iota) in bypassing ultraviolet (UV) induced photoproducts in the absence of Polη, using NER-deficient (XP-C) cells knocked down for Polι and/or Polη genes. Our results indicate that cells lacking either Polι or Polη have increased sensitivity to UVC radiation. The lack of both TLS polymerases led to increased cell death and defects in proliferation and migration. Loss of both polymerases induces a significant replication fork arrest and G1/S-phase blockage, compared to the lack of Polη alone. In conclusion, we propose that Polι acts as a bona fide backup for Polη in the TLS of UV-photoproducts.


Subject(s)
DNA Polymerase iota , Xeroderma Pigmentosum , Humans , DNA Damage , Translesion DNA Synthesis , DNA Replication , Xeroderma Pigmentosum/genetics , Ultraviolet Rays , DNA Repair
19.
Brain ; 146(12): 5044-5059, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040034

ABSTRACT

Xeroderma pigmentosum (XP) results from biallelic mutations in any of eight genes involved in DNA repair systems, thus defining eight different genotypes (XPA, XPB, XPC, XPD, XPE, XPF, XPG and XP variant or XPV). In addition to cutaneous and ophthalmological features, some patients present with XP neurological disease. It is unknown whether the different neurological signs and their progression differ among groups. Therefore, we aim to characterize the XP neurological disease and its evolution in the heterogeneous UK XP cohort. Patients with XP were followed in the UK National XP Service, from 2009 to 2021. Age of onset for different events was recorded. Cerebellar ataxia and additional neurological signs and symptoms were rated with the Scale for the Assessment and Rating of Ataxia (SARA), the Inventory of Non-Ataxia Signs (INAS) and the Activities of Daily Living questionnaire (ADL). Patients' mutations received scores based on their predicted effects. Data from available ancillary tests were collected. Ninety-three XP patients were recruited. Thirty-six (38.7%) reported neurological symptoms, especially in the XPA, XPD and XPG groups, with early-onset and late-onset forms, and typically appearing after cutaneous and ophthalmological symptoms. XPA, XPD and XPG patients showed higher SARA scores compared to XPC, XPE and XPV. SARA total scores significantly increased over time in XPD (0.91 points/year, 95% confidence interval: 0.61, 1.21) and XPA (0.63 points/year, 95% confidence interval: 0.38, 0.89). Hyporeflexia, hypopallesthaesia, upper motor neuron signs, chorea, dystonia, oculomotor signs and cognitive impairment were frequent findings in XPA, XPD and XPG. Cerebellar and global brain atrophy, axonal sensory and sensorimotor neuropathies, and sensorineural hearing loss were common findings in patients. Some XPC, XPE and XPV cases presented with abnormalities on examination and/or ancillary tests, suggesting underlying neurological involvement. More severe mutations were associated with a faster progression in SARA total score in XPA (0.40 points/year per 1-unit increase in severity score) and XPD (0.60 points/year per 1-unit increase), and in ADL total score in XPA (0.35 points/year per 1-unit increase). Symptomatic and asymptomatic forms of neurological disease are frequent in XP patients, and neurological symptoms can be an important cause of disability. Typically, the neurological disease will be preceded by cutaneous and ophthalmological features, and these should be actively searched in patients with idiopathic late-onset neurological syndromes. Scales assessing cerebellar function, especially walking and speech, and disability can show progression in some of the groups. Mutation severity can be used as a prognostic biomarker for stratification purposes in clinical trials.


Subject(s)
Central Nervous System Diseases , Xeroderma Pigmentosum , Humans , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/diagnosis , Activities of Daily Living , Prospective Studies , DNA Repair , Mutation/genetics
20.
Genes (Basel) ; 14(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003022

ABSTRACT

Advances in genetic technologies have made genetic testing more accessible than ever before. However, depending on national, regional, legal, and health insurance circumstances, testing procedures may still need to be streamlined in real-world clinical practice. In cases of autosomal recessive disease with consanguinity, the mutation locus is necessarily isodisomy because both alleles originate from a common ancestral chromosome. Based on this premise, we implemented integrated genetic diagnostic methods using SNP array screening and long range PCR-based targeted NGS in a Japanese patient with xeroderma pigmentosum (XP) under the limitation of the national health insurance system. SNP array results showed isodisomy only in XPC and ERCC4 loci. NGS, with a minimal set of long-range PCR primers, detected a homozygous frameshift mutation in XPC; NM_004628.5:c.218_219insT p.(Lys73AsnfsTer9), confirmed by Sanger sequencing, leading to a rapid diagnosis of XP group C. This shortcut strategy is applicable to all autosomal recessive diseases caused by consanguineous marriages, especially in scenarios with a moderate number of genes to test, a common occurrence in clinical genetic practice.


Subject(s)
Xeroderma Pigmentosum , Humans , Xeroderma Pigmentosum/diagnosis , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/epidemiology , Consanguinity , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...