Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.114
Filter
2.
J Environ Manage ; 362: 121351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838535

ABSTRACT

In this study, the growth of yeast and yeast-like fungi in the liquid digestate from vegetable wastes was investigated in order to remove nutrients and organic pollutants, and for their application as co-culture members with green microalgae. The studied yeast strains were characterized for their assimilative and enzymatic profiles as well as temperature requirements. In the first experimental stage, the growth dynamics of each strain were determined, allowing to select the best yeasts for further studies. In the subsequent stage, the ability of selectants to remove organic pollutants was assessed. Different cultivation media containing respectively 1:3, 1:1, 3:1 vol ratio of liquid digestate and the basal minimal medium were used. Among all tested yeast strains, Rhodotorula mucilaginosa DSM 70825 showed the most promising results, demonstrating the highest potential for removing organic substrates and nutrients. Depending on the medium, this strain achieved 50-80% sCOD, 45-60% tVFAs, 21-45% TN, 33-52% PO43- reduction rates. Similar results were obtained for the strain Candida sp. OR687571. The high nutrient and organics removal efficiency by these yeasts could likely be linked to their ability to assimilate xylose (being the main source of carbon in the liquid digestate). In culture media containing liquid digestate, both yeast strains achieved good viability and proliferation potential. In the liquid digestate medium, R. mucilaginosa and Candida sp. showed vitality at the level of 51.5% and 45.0%, respectively. These strains seem to be a good starting material for developing effective digestate treatment strategies involving monocultures and/or consortia with other yeasts or green microalgae.


Subject(s)
Coculture Techniques , Microalgae , Yeasts , Microalgae/growth & development , Microalgae/metabolism , Yeasts/metabolism , Yeasts/growth & development , Rhodotorula/metabolism , Rhodotorula/growth & development , Nutrients/metabolism , Biodegradation, Environmental , Candida/growth & development , Candida/metabolism
3.
J Agric Food Chem ; 72(21): 11871-11884, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38744727

ABSTRACT

Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.


Subject(s)
Bacteria , CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Yeasts/genetics , Yeasts/metabolism
4.
Environ Pollut ; 351: 124106, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705445

ABSTRACT

Polyethylene terephthalate is a widely produced plastic polymer that exhibits considerable biodegradation resistance, making its derived microplastics ubiquitous environmental pollutants. In this study, a new yeast strain (Vanrija sp. SlgEBL5) was isolated and found to have lipase and esterase-positive capabilities for degrading polyethylene terephthalate microplastics. This isolate changed the microplastic surface charge from -19.3 to +31.0 mV and reduced more than 150 µm of its size in addition to reducing the intensity of the terephthalate, methylene, and ester bond functional groups of the polymer in 30 days. Tween 20 as a chemical auxiliary treatment combined with biodegradation increased the microplastic degradation rate from 10 to 16.6% and the thermal degradation rate from 85 to 89%. Releasing less potentially hazardous by-products like 1,2 diethyl-benzene despite the higher abundance of long-chain n-alkanes, including octadecane and tetracosane was also the result of the bio + chemical treatment. Altogether, the findings showed that Vanrija sp. SlgEBL5 has the potential as a biological treating agent for polyethylene terephthalate microplastics, and the simultaneous bio + chemical treatment enhanced the biodegradation rate and efficiency.


Subject(s)
Biodegradation, Environmental , Microplastics , Polyethylene Terephthalates , Polysorbates , Polyethylene Terephthalates/metabolism , Polyethylene Terephthalates/chemistry , Microplastics/metabolism , Polysorbates/chemistry , Yeasts/metabolism
5.
Food Chem ; 452: 139480, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703738

ABSTRACT

This study aimed to investigate the correlation between the composition of volatile compounds, consumer acceptance, and drivers of (dis)liking of Protaetia brevitarsis larvae fermented using lactic acid bacteria and yeast. Volatile compounds were analyzed using HS-SPME-Arrow-GC-MS, and a sensory evaluation was conducted with 72 consumers. A total of 113 volatile compounds were detected, and principal component analysis indicated that the samples could be divided into three groups. The calculated relative odor activity values (ROAV) revealed the presence of 27 compounds (ROAV >1). Volatile compounds with high ROAV were predominantly found during yeast fermentation. The sensory evaluation results indicated a strong correlation between low levels of off-odor intensity and high odor liking, emphasizing that odor profile had a more direct association with consumer acceptance than odor intensity. These findings suggest that yeast fermentation using volatile compounds, which positively influences consumer acceptance, is appropriate for Protaetia brevitarsis larvae.


Subject(s)
Fermentation , Lactobacillales , Larva , Odorants , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Animals , Larva/metabolism , Larva/growth & development , Larva/microbiology , Humans , Odorants/analysis , Lactobacillales/metabolism , Female , Taste , Male , Saccharomyces cerevisiae/metabolism , Yeasts/metabolism , Gas Chromatography-Mass Spectrometry , Adult , Consumer Behavior
6.
J Photochem Photobiol B ; 256: 112945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795655

ABSTRACT

In this study, for the first time, red LED light radiation was applied to the fermentation process of table olives using the Negrinha de Freixo variety. Photostimulation using LED light emission (630 ± 10 nm) is proposed to shorten and speed up this stage and reduce time to market. Several physical-chemical characteristics and microorganisms (total microbial count of mesophilic aerobic, molds, yeasts, and lactic acid bacteria) and their sequence during fermentation were monitored. The fermentation occurred for 122 days, with two irradiation periods for red LED light. The nutritional composition and sensory analysis were performed at the end of the process. Fermentation under red LED light increased the viable yeast and lactic acid bacteria (LAB) cell counts and decreased the total phenolics in olives. Even though significant differences were observed in some color parameters, the hue values were of the same order of magnitude and similar for both samples. Furthermore, the red LED light did not play a relevant change in the texture profile, preventing the softening of the fruit pulp. Similarly, LED light did not modify the existing type of microflora but increased species abundance, resulting in desirable properties and activities. The species identified were yeasts - Candida boidinii, Pichia membranifaciens, and Saccharomyces cerevisiae, and bacteria - Lactobacillus plantarum and Leuconostoc mesenteroides, being the fermentative process dominated by S. cerevisiae and L. plantarum. At the end of fermentation (122 days), the irradiated olives showed less bitterness and acidity, higher hardness, and lower negative sensory attributes than non-irradiated. Thus, the results of this study indicate that red LED light application can be an innovative technology for table olives production.


Subject(s)
Fermentation , Light , Olea , Olea/microbiology , Olea/radiation effects , Yeasts/radiation effects , Yeasts/metabolism , Phenols/metabolism , Phenols/chemistry , Phenols/analysis , Fruit/radiation effects , Fruit/microbiology , Food Microbiology
7.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38782713

ABSTRACT

Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.


Subject(s)
Biosensing Techniques , Colorimetry , Saccharomyces cerevisiae , Biosensing Techniques/methods , Colorimetry/methods , Saccharomyces cerevisiae/metabolism , Lycopene/metabolism , Yeasts/isolation & purification , Yeasts/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Point-of-Care Systems
8.
BMC Microbiol ; 24(1): 163, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745280

ABSTRACT

Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.


Subject(s)
Fermentation , Fermented Foods , Food Microbiology , Millets , Yeasts , Ghana , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Yeasts/metabolism , Fermented Foods/microbiology , Millets/microbiology , Lactobacillales/classification , Lactobacillales/isolation & purification , Lactobacillales/genetics , Lactobacillales/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny , Hydrogen-Ion Concentration , Edible Grain/microbiology
9.
Food Res Int ; 187: 114366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763646

ABSTRACT

In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.


Subject(s)
Beer , Fermentation , Fermented Foods , Gas Chromatography-Mass Spectrometry , Odorants , Solid Phase Microextraction , Volatile Organic Compounds , Yeasts , Beer/analysis , Beer/microbiology , Odorants/analysis , Volatile Organic Compounds/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Yeasts/isolation & purification , Yeasts/metabolism , Food Microbiology
10.
Int J Biol Macromol ; 266(Pt 2): 131379, 2024 May.
Article in English | MEDLINE | ID: mdl-38580014

ABSTRACT

Monoclonal antibodies (mAbs) are laboratory-based engineered protein molecules with a monovalent affinity or multivalent avidity towards a specific target or antigen, which can mimic natural antibodies that are produced in the human immune systems to fight against detrimental pathogens. The recombinant mAb is one of the most effective classes of biopharmaceuticals produced in vitro by cloning and expressing synthetic antibody genes in a suitable host. Yeast is one of the potential hosts among others for the successful production of recombinant mAbs. However, there are very few yeast-derived mAbs that got the approval of the regulatory agencies for direct use for treatment purposes. Certain challenges encountered by yeasts for recombinant antibody productions need to be overcome and a few considerations related to antibody structure, host engineering, and culturing strategies should be followed for the improved production of mAbs in yeasts. In this review, the drawbacks related to the metabolic burden of the host, culturing conditions including induction mechanism and secretion efficiency, solubility and stability, downstream processing, and the pharmacokinetic behavior of the antibody are discussed, which will help in developing the yeast hosts for the efficient production of recombinant mAbs.


Subject(s)
Antibodies, Monoclonal , Recombinant Proteins , Yeasts , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Yeasts/metabolism , Yeasts/genetics
11.
Braz J Microbiol ; 55(2): 1451-1463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656427

ABSTRACT

Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.


Subject(s)
Antifreeze Proteins , Bacteria , Freezing , Antarctic Regions , Antifreeze Proteins/metabolism , Antifreeze Proteins/chemistry , Antifreeze Proteins/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Islands , Phylogeny , Yeasts/genetics , Yeasts/classification , Yeasts/isolation & purification , Yeasts/metabolism , RNA, Ribosomal, 16S/genetics , Ecosystem
12.
Microb Cell Fact ; 23(1): 111, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622625

ABSTRACT

BACKGROUND: Ascomycetous budding yeasts are ubiquitous environmental microorganisms important in food production and medicine. Due to recent intensive genomic research, the taxonomy of yeast is becoming more organized based on the identification of monophyletic taxa. This includes genera important to humans, such as Kazachstania. Until now, Kazachstania humilis (previously Candida humilis) was regarded as a sourdough-specific yeast. In addition, any antibacterial activity has not been associated with this species. RESULTS: Previously, we isolated a yeast strain that impaired bio-hydrogen production in a dark fermentation bioreactor and inhibited the growth of Gram-positive and Gram-negative bacteria. Here, using next generation sequencing technologies, we sequenced the genome of this strain named K. humilis MAW1. This is the first genome of a K. humilis isolate not originating from a fermented food. We used novel phylogenetic approach employing the 18 S-ITS-D1-D2 region to show the placement of the K. humilis MAW1 among other members of the Kazachstania genus. This strain was examined by global phenotypic profiling, including carbon sources utilized and the influence of stress conditions on growth. Using the well-recognized bacterial model Escherichia coli AB1157, we show that K. humilis MAW1 cultivated in an acidic medium inhibits bacterial growth by the disturbance of cell division, manifested by filament formation. To gain a greater understanding of the inhibitory effect of K. humilis MAW1, we selected 23 yeast proteins with recognized toxic activity against bacteria and used them for Blast searches of the K. humilis MAW1 genome assembly. The resulting panel of genes present in the K. humilis MAW1 genome included those encoding the 1,3-ß-glucan glycosidase and the 1,3-ß-glucan synthesis inhibitor that might disturb the bacterial cell envelope structures. CONCLUSIONS: We characterized a non-sourdough-derived strain of K. humilis, including its genome sequence and physiological aspects. The MAW1, together with other K. humilis strains, shows the new organization of the mating-type locus. The revealed here pH-dependent ability to inhibit bacterial growth has not been previously recognized in this species. Our study contributes to the building of genome sequence-based classification systems; better understanding of K.humilis as a cell factory in fermentation processes and exploring bacteria-yeast interactions in microbial communities.


Subject(s)
Anti-Bacterial Agents , Saccharomycetales , Humans , Phylogeny , Anti-Bacterial Agents/metabolism , Gram-Negative Bacteria , Gram-Positive Bacteria , Saccharomycetales/genetics , Yeasts/metabolism , Fermentation
13.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599628

ABSTRACT

Yeasts are prevalent in the open ocean, yet we have limited understanding of their ecophysiological adaptations, including their response to nitrogen availability, which can have a major role in determining the ecological potential of other planktonic microbes. In this study, we characterized the nitrogen uptake capabilities and growth responses of marine-occurring yeasts. Yeast isolates from the North Atlantic Ocean were screened for growth on diverse nitrogen substrates, and across a concentration gradient of three environmentally relevant nitrogen substrates: nitrate, ammonium, and urea. Three strains grew with enriched nitrate while two did not, demonstrating that nitrate utilization is present but not universal in marine yeasts, consistent with existing knowledge of nonmarine yeast strains. Naganishia diffluens MBA_F0213 modified the key functional trait of cell size in response to nitrogen concentration, suggesting yeast cell morphology changes along chemical gradients in the marine environment. Meta-analysis of the reference DNA barcode in public databases revealed that the genus Naganishia has a global ocean distribution, strengthening the environmental applicability of the culture-based observations. This study provides novel quantitative understanding of the ecophysiological and morphological responses of marine-derived yeasts to variable nitrogen availability in vitro, providing insight into the functional ecology of yeasts within pelagic open ocean environments.


Subject(s)
Nitrates , Nitrogen , Seawater , Nitrogen/metabolism , Seawater/microbiology , Nitrates/metabolism , Atlantic Ocean , Yeasts/metabolism , Yeasts/genetics , Yeasts/growth & development , Ammonium Compounds/metabolism , Urea/metabolism
14.
Int J Food Microbiol ; 417: 110688, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38615425

ABSTRACT

Taggiasca table olives are typical of Liguria, a Northwestern Italian region, produced with a spontaneous fermentation carried out by placing the raw drupes directly into brine with a salt concentration of 8-12 % w/v. Such concentrations limit the development of unwanted microbes and favor the growth of yeasts. This process usually lasts up to 8 months. Yeasts are found throughout the entire fermentation process and they are mainly involved in the production of volatile organic compounds, which strongly impact the quality of the final product. The aim of this study was to evaluate the dynamics of autochthonous yeasts in brines and olives in a spontaneous process with no lye pre-treatment or addition of acids in the fermenting brine with 10 % NaCl (w/v) in two batches during 2021 harvest. Three hundred seventy-three yeast colonies were isolated, characterized by rep-PCR and identified by the D1/D2 region of the 26S rRNA gene sequencing. Mycobiota was also studied by 26S rRNA gene metataxonomics, while metabolome was assessed through GC-MS analysis. Traditional culture-dependent methods showed the dominance of Candida diddensiae, Wickerhamomyces anomalus, Pichia membranifaciens and Aureobasidium pullulans, with differences in species distribution between batches, sampling time and type of sample (olives/brines). Amplicon-based sequencing confirmed the dominance of W. anomalus in batch 1 throughout the entire fermentation, while Cyteromyces nyonsensis and Aureobasidium spp. were most abundant in the fermentation in batch 2. Volatilome results were analyzed and correlated to the mycobiota data, confirming differences between fermentation stages. Given the high appreciation for this traditional food, this study helps elucidate the mycobiota associated to Taggiasca cv. table olives and its relationship with the quality of the final product.


Subject(s)
Fermentation , Food Microbiology , Olea , Volatile Organic Compounds , Yeasts , Olea/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Yeasts/metabolism , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Italy , Salts
15.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38684485

ABSTRACT

Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.


Subject(s)
Alcoholic Beverages , Fermentation , Flavoring Agents , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis , Flavoring Agents/metabolism , Yeasts/metabolism , Yeasts/genetics , Yeasts/classification , Taste , Scotland , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Volatile Organic Compounds/metabolism
16.
Environ Pollut ; 349: 123942, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604303

ABSTRACT

Bacterial contamination of karst groundwater is a major concern for public health. Artificial tracing studies are crucial for establishing links between locations where pollutants can rapidly reach the aquifer systems and subsequent receptors, as well as for enhanced understanding of pollutant transport. However, widely used solute artificial tracers do not always move through the subsurface in the same manner as particles and microorganisms, hence may not be ideal proxies for predicting movement of bacterial contaminants. This study evaluates whether a historically used microbial tracer (yeast) which is readily available, inexpensive, and environmentally friendly, but usually overlooked in modern karst hydrogeological studies due to challenges associated with its detection and quantification in the past, can reemerge as a valuable tracer using the latest technology for its detection. Two field-based studies on separate karst systems were carried out during low-flow conditions using a portable particle counter along with flow cytometry measurements to monitor the recovery of the yeast at the springs. Soluble fluorescent dyes were also injected simultaneously with the yeast for comparison of transport dynamics. On one tracer test, through a karst conduit of much higher velocities, the injected yeast and fluorescent dye arrived at the same time at the spring, in comparison to the tracer test on a conduit system with lower groundwater velocities in which the yeast particles were detected before the dye at the sampling site. Both a portable particle counter and flow cytometry successfully detected yeast during both tests, thereby demonstrating the applicability of this tracer with contemporary instrumentation. Even though no significant advantages of flow cytometry over the portable counter system can be reported on the basis of the presented results, this study has shown that flow cytometry can be successfully used to detect and quantify introduced microbial tracers in karst environments with extremely high precision.


Subject(s)
Environmental Monitoring , Groundwater , Groundwater/microbiology , Groundwater/chemistry , Environmental Monitoring/methods , Yeasts/metabolism , Water Microbiology , Water Movements
17.
Curr Opin Biotechnol ; 87: 103098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452572

ABSTRACT

Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.


Subject(s)
Biological Products , Biological Products/metabolism , Plants/metabolism , Biotechnology/methods , Synthetic Biology , Yeasts/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Humans
18.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38549434

ABSTRACT

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Subject(s)
Bacteria , Biodegradation, Environmental , Caffeine , Fungi , Caffeine/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism , Fungi/genetics , Yeasts/metabolism , Yeasts/genetics
19.
J Biosci Bioeng ; 137(6): 420-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493064

ABSTRACT

The aim of this study was to evaluate the physiology of 13 yeast strains by assessing their kinetic parameters under anaerobic conditions. They included Saccharomyces cerevisiae CAT-1 and 12 isolated yeasts from different regions in Brazil. The study aimed to enhance understanding of the metabolism of these strains for more effective applications. Measurements included quantification of sugars, ethanol, glycerol, and organic acids. Various kinetic parameters were analyzed, such as specific substrate utilization rate (qS), maximum specific growth rate (µmax), doubling time, biomass yield, product yield, maximum cell concentration, ethanol productivity (PEth), biomass productivity, and CO2 concentration. S. cerevisiae CAT-1 exhibited the highest values in glucose for µmax (0.35 h-1), qS (3.06 h-1), and PEth (0.69 gEth L-1 h-1). Candida parapsilosis Recol 37 did not fully consume the substrate. In fructose, S. cerevisiae CAT-1 stood out with higher values for µmax (0.25 h-1), qS (2.24 h-1), and PEth (0.60 gEth L-1 h-1). Meyerozyma guilliermondii Recol 09 and C. parapsilosis Recol 37 had prolonged fermentation times and residual substrate. In sucrose, only S. cerevisiae CAT-1, S. cerevisiae BB9, and Pichia kudriavzevii Recol 39 consumed all the substrate, displaying higher PEth (0.72, 0.51, and 0.44 gEth L-1 h-1, respectively) compared to other carbon sources.


Subject(s)
Biomass , Carbon , Fermentation , Fructose , Glucose , Saccharomyces cerevisiae , Sucrose , Fructose/metabolism , Glucose/metabolism , Sucrose/metabolism , Anaerobiosis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Carbon/metabolism , Ethanol/metabolism , Yeasts/metabolism , Yeasts/growth & development , Yeasts/classification , Kinetics , Glycerol/metabolism , Brazil
20.
J Sci Food Agric ; 104(10): 6149-6156, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38445560

ABSTRACT

BACKGROUND: Whole wheat steamed bread has been recommended for its potential nutritional benefits to human health. Given the positive role of both organic acid and alkali in improving dough development and product quality, the present study investigated the effects of neutralization by addition of alkali (Na2CO3) after dough acidification with traditional Jiaozi starter on the properties of whole wheat dough. RESULTS: The population of yeast and lactic acid bacteria and the acidification level of the dough increased significantly after fermentation with Jiaozi. Incorporation of alkali greatly improved the leavening capacity of the remixed dough and the quality of steamed bread. Jiaozi fermentation and alkali addition changed the water distribution patterns (T2) and affected the secondary structures of gluten protein, starch crystallinity and pasting properties. The storage modulus (G') of the dough increased significantly with the alkali addition, which could be attributed to the promoted cross-linking of the gluten structure and the altered hydration state of the macromolecules. CONCLUSION: The results of the present study indicate that a combination of Jiaozi fermentation and alkali addition could improve the technological properties of whole wheat dough and the quality of steamed bread. The results will help us to further explore the potential application of moderate acidification and alkali addition in the production of leavened whole wheat products. © 2024 Society of Chemical Industry.


Subject(s)
Bread , Fermentation , Flour , Glutens , Triticum , Triticum/chemistry , Bread/analysis , Flour/analysis , Hydrogen-Ion Concentration , Glutens/chemistry , Food Handling/methods , Lactobacillales/metabolism , Lactobacillales/chemistry , Alkalies/chemistry , Yeasts/chemistry , Yeasts/metabolism , Carbonates
SELECTION OF CITATIONS
SEARCH DETAIL
...