Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.249
Filter
1.
Internet resource in Portuguese | LIS -Health Information Locator | ID: lis-49605

ABSTRACT

Diante do recente registro de dois casos isolados de febre amarela na região da divisa de São Paulo com Minas Gerais, o Ministério da Saúde emitiu neste domingo (28) um alerta para intensificação das ações de vigilância e imunização nas áreas com transmissão ativa do vírus da febre.


Subject(s)
Public Health Surveillance , Yellow Fever Vaccine
2.
PLoS Negl Trop Dis ; 18(5): e0012173, 2024 May.
Article in English | MEDLINE | ID: mdl-38739650

ABSTRACT

BACKGROUND: Yellow fever (YF), a mosquito-borne viral hemorrhagic fever, is endemic in Uganda and causes frequent outbreaks. A total of 1.6 million people were vaccinated during emergency mass immunization campaigns in 2011 and 2016. This study explored local perceptions of YF emergency mass immunization among vulnerable groups to inform future vaccination campaigns. METHODOLOGY: In this qualitative study, we conducted 43 semi-structured interviews, 4 focus group discussions, and 10 expert interviews with 76 participants. Data were collected in six affected districts with emergency mass vaccination. We included vulnerable groups (people ≥ 65 years and pregnant women) who are typically excluded from YF vaccination except during mass immunization. Data analysis was conducted using grounded theory. Inductive coding was utilized, progressing through open, axial, and selective coding. PRINCIPAL FINDINGS: Participants relied on community sources for information about the YF mass vaccination. Information was disseminated door-to-door, in community spaces, during religious gatherings, and on the radio. However, most respondents had no knowledge of the vaccine, and it was unclear to them whether a booster dose was required. In addition, the simultaneous presidential election during the mass vaccination campaign led to suspicion and resistance to vaccination. The lack of reliable and trustworthy information and the politicization of vaccination campaigns reinforced mistrust of YF vaccines. CONCLUSIONS/SIGNIFICANCE: People in remote areas affected by YF outbreaks rely on community sources of information. We therefore recommend improving health education, communication, and engagement through respected and trusted community members. Vaccination campaigns can never be seen as detached from political systems and power relations.


Subject(s)
Health Knowledge, Attitudes, Practice , Mass Vaccination , Qualitative Research , Yellow Fever Vaccine , Yellow Fever , Humans , Uganda/epidemiology , Female , Yellow Fever/prevention & control , Yellow Fever/epidemiology , Male , Yellow Fever Vaccine/administration & dosage , Mass Vaccination/psychology , Aged , Middle Aged , Vulnerable Populations , Adult , Pregnancy , Disease Outbreaks/prevention & control , Focus Groups
3.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791547

ABSTRACT

The COVID-19 pandemic has made assessing vaccine efficacy more challenging. Besides neutralizing antibody assays, systems vaccinology studies use omics technology to reveal immune response mechanisms and identify gene signatures in human peripheral blood mononuclear cells (PBMCs). However, due to their low proportion in PBMCs, profiling the immune response signatures of dendritic cells (DCs) is difficult. Here, we develop a predictive model for evaluating early immune responses in dendritic cells. We establish a THP-1-derived dendritic cell (TDDC) model and stimulate their maturation in vitro with an optimal dose of attenuated yellow fever 17D (YF-17D). Transcriptomic analysis reveals that type I interferon (IFN-I)-induced immunity plays a key role in dendritic cells. IFN-I regulatory biomarkers (IRF7, SIGLEC1) and IFN-I-inducible biomarkers (IFI27, IFI44, IFIT1, IFIT3, ISG15, MX1, OAS2, OAS3) are identified and validated in vitro and in vivo. Furthermore, we apply this TDDC approach to various types of vaccines, providing novel insights into their early immune response signatures and their heterogeneity in vaccine recipients. Our findings suggest that a standardizable TDDC model is a promising predictive approach to assessing early immunity in DCs. Further research into vaccine efficacy assessment approaches on various types of immune cells could lead to a systemic regimen for vaccine development in the future.


Subject(s)
Dendritic Cells , Vaccination , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Vaccination/methods , Interferon Type I/metabolism , Interferon Type I/immunology , THP-1 Cells , COVID-19/immunology , COVID-19/prevention & control , Animals , SARS-CoV-2/immunology , Biomarkers , COVID-19 Vaccines/immunology , Gene Expression Profiling , Mice , Transcriptome , Yellow Fever Vaccine/immunology
4.
Sci Rep ; 14(1): 10842, 2024 05 12.
Article in English | MEDLINE | ID: mdl-38735993

ABSTRACT

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Subject(s)
Epitopes, T-Lymphocyte , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Yellow fever virus/genetics , Humans , Yellow Fever/prevention & control , Yellow Fever/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, B-Lymphocyte/immunology , Vaccinology/methods , Models, Molecular , Vaccine Development , Molecular Dynamics Simulation , T-Lymphocytes, Cytotoxic/immunology
5.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Article in English | MEDLINE | ID: mdl-38571392

ABSTRACT

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Subject(s)
Vaccines, Attenuated , Yellow Fever Vaccine , Yellow fever virus , Humans , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Vaccines, Attenuated/immunology , Animals , Yellow Fever/prevention & control , Yellow Fever/immunology , Vaccination/methods
6.
J Virol ; 98(5): e0151623, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38567951

ABSTRACT

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Subject(s)
Macaca fascicularis , Models, Animal , Yellow Fever Vaccine , Animals , Female , Humans , Male , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunity, Innate , Systems Biology/methods , Vaccination , Yellow Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/virology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
7.
Sci Rep ; 14(1): 7709, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565882

ABSTRACT

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Humans , Adult , Antibodies, Neutralizing , Interleukin-10 , Antibodies, Viral , Tumor Necrosis Factor-alpha , CD8-Positive T-Lymphocytes , Vaccination
8.
Trials ; 25(1): 216, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532475

ABSTRACT

RATIONALE: The effectiveness of immunisation with pneumococcal conjugate vaccine (PCV) has been demonstrated in many countries. However, the global impact of PCV is limited by its cost, which has prevented its introduction in some countries. Reducing the cost of PCV programmes will facilitate further vaccine introductions and improve the sustainability of PCV in low-income countries when they transition from subsidised vaccine supply. We are conducting a large, population-level, cluster-randomised field trial (PVS) of an alternative reduced-dose schedule of PCV compared to the standard schedule. We are also conducting a nested sub-study at the individual level to investigate the immunogenicity of the two schedules and their effects on pneumococcal carriage acquisition (PVS-AcqImm). METHODS AND DESIGN: PVS-AcqImm is a prospective, cluster-randomised trial of an alternative schedule of one dose of PCV scheduled at age 6 weeks with a booster dose at age 9 months compared to the standard of three primary doses scheduled at 6, 10, and 14 weeks of age. Sub-groups within the alternative schedule group receive yellow fever vaccine separately or co-administered with PCV at 9 months of age. The primary endpoints are (a) concentrations of vaccine-type anti-pneumococcal IgG at 18 months of age, (b) proportions with yellow fever neutralising antibody titre ≥ 1:8 4 weeks after separate or co-administration of PCV and yellow fever vaccines, and (c) rate of nasopharyngeal vaccine-type pneumococcal acquisition from 10-14 months of age. Participants and field staff are not masked to group allocation while measurement of the laboratory endpoints is masked. Approximately equal numbers of participants are resident in each of 28 randomly allocated geographic clusters (14 clusters in each group); 784 enrolled for acquisition measurements and 336 for immunogenicity measurements. PURPOSE: This statistical analysis plan (SAP) describes the PVS-AcqImm cohort and follow-up criteria to be used in different analyses. The SAP defines the endpoints and describes how adherence to the interventions will be presented. We describe the approach to analyses and how we will account for the effect of clustering. Defining the SAP prior to the conduct of analysis will avoid bias in analyses that may arise from prior knowledge of trial findings. TRIAL REGISTRATION: ISRCTN, ISRCTN7282161328. Registered on 28 November 2019. https://www.isrctn.com/ISRCTN72821613 . PROTOCOL: MRCG SCC number 1670, LSHTM Ref 17683. Current protocol version: 6.0, 24 May 2021. Version: 1.0 (5 April 2023); SAP revisions-none.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Humans , Infant , Immunization Schedule , Pneumococcal Vaccines , Prospective Studies , Streptococcus pneumoniae , Vaccination/methods , Vaccines, Conjugate
9.
Vaccine ; 42(11): 2729-2732, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38514353

ABSTRACT

Studies on yellow fever vaccine (YF) in chronic kidney disease (CKD) patients are scarce. This cross-sectional study aimed to evaluate YF neutralizing antibody seroprevalence and titers in previously vaccinated adults with CKD, on dialysis (D-CKD) or not (ND-CKD), compared to healthy persons. The micro Plaque Reduction Neutralization-Horseradish Peroxidase (µPRN-HP) test was used. Antibody titers were expressed as the reciprocal of the highest dilution that neutralized the challenge virus by 50 % (µPRN50). Seropositivity cut-off was set at ≥ 1:100. We included 153 participants: 46 ND-CKD, 50 D-CKD and 57 healthy adults. Median ages were 58.3, 55 and 52.2 years, respectively. Median time since YF vaccination was 22.3, 18.5 and 48.3 months respectively. There were no statistically significant differences in YF seroprevalence and neutralizing antibodies titers among groups: 100 % of ND-CKD; 96 % of D-CKD and 100 % of healthy participants were seropositive. Geometric mean titers (GMT) were 818.5, 683.0 and 665.5, respectively (p = 0.289).


Subject(s)
Renal Insufficiency, Chronic , Yellow Fever Vaccine , Yellow Fever , Adult , Humans , Yellow Fever/prevention & control , Antibodies, Neutralizing , Cross-Sectional Studies , Seroepidemiologic Studies , Antibodies, Viral , Yellow fever virus , Vaccination , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy
10.
J Travel Med ; 31(3)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38438165

ABSTRACT

BACKGROUND: Vaccination plays a critical role in mitigating the burden associated with yellow fever (YF). However, there is a lack of comprehensive evidence on the humoral response to primary vaccination in the paediatric population, with several questions debated, including the response when the vaccine is administered at early ages, the effect of co-administration with other vaccines, the duration of immunity and the use of fractional doses, among others. This study summarizes the existing evidence regarding the humoral response to primary YF vaccination in infants and children. METHODS: Studies on the humoral response to primary YF vaccination in children aged 12 years or younger were reviewed. The humoral vaccine response rate (VRR), i.e. the proportion of children who tested positive for vaccine-induced YF-specific neutralizing antibodies, was pooled through random-effects meta-analysis and categorized based on the time elapsed since vaccination. Subgroup, meta-regression and sensitivity analyses were performed. RESULTS: A total of 33 articles met the inclusion criteria, with all but one conducted in countries where YF is endemic. A total of 14 028 infants and children entered this systematic review. Within three months following vaccination, the pooled VRR was 91.9% (95% CI 89.8-93.9). A lower VRR was observed with the 17DD vaccine at the meta-regression analysis. No significant differences in immunogenicity outcomes were observed based on age, administration route, co-administration with other vaccines, or fractional dosing. Results also indicate a decline in VRR over time. CONCLUSIONS: Primary YF vaccination effectively provides humoral immunity in paediatric population. However, humoral response declines over time, and this decline is observable after the first 18 months following vaccination. A differential response according to the vaccine substrain was also observed. This research has valuable implications for stimulating further research on the primary YF vaccination in infants and children, as well as for informing future policies.


Subject(s)
Yellow Fever Vaccine , Yellow Fever , Child , Infant , Humans , Yellow Fever/prevention & control , Antibodies, Neutralizing , Vaccination/methods , Immunity, Humoral , Antibodies, Viral
11.
Microbiol Spectr ; 12(5): e0370323, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511952

ABSTRACT

Between 2016 and 2018, Brazil experienced major sylvatic yellow fever (YF) outbreaks that caused hundreds of casualties, with Minas Gerais (MG) being the most affected state. These outbreaks provided a unique opportunity to assess the immune response triggered by the wild-type (WT) yellow fever virus (YFV) in humans. The plaque reduction neutralization test (PRNT) is currently the standard method to assess the humoral immune response to YFV by measuring neutralizing antibodies (nAbs). The present study aimed to evaluate the humoral immune response of patients from the 2017-2018 sylvatic YF outbreak in MG with different disease outcomes by using PRNTs with a WT YFV strain, isolated from the 2017-2018 outbreak, and a vaccine YFV strain. Samples from naturally infected YF patients were tested, in comparison with healthy vaccinees. Results showed that both groups presented different levels of nAb against the WT and vaccine strains, and the levels of neutralization against the strains varied homotypically and heterotypically. Results based on the geometric mean titers (GMTs) suggest that the humoral immune response after a natural infection of YFV can reach higher levels than that induced by vaccination (GMT of patients against WT YFV compared to GMT of vaccinees, P < 0.0001). These findings suggest that the humoral immune responses triggered by the vaccine and WT strains of YFV are different, possibly due to genetic and antigenic differences between these viruses. Therefore, current means of assessing the immune response in naturally infected YF individuals and immunological surveillance methods in areas with intense viral circulation may need to be updated.IMPORTANCEYellow fever is a deadly febrile disease caused by the YFV. Despite the existence of effective vaccines, this disease still represents a public health concern worldwide. Much is known about the immune response against the vaccine strains of the YFV, but recent studies have shown that it differs from that induced by WT strains. The extent of this difference and the mechanisms behind it are still unclear. Thus, studies aimed to better understand the immune response against this virus are relevant and necessary. The present study evaluated levels of neutralizing antibodies of yellow fever patients from recent outbreaks in Brazil, in comparison with healthy vaccinees, using plaque reduction neutralization tests with WT and vaccine YFV strains. Results showed that the humoral immune response in naturally infected patients was higher than that induced by vaccination, thus providing new insights into the immune response triggered against these viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Disease Outbreaks , Immunity, Humoral , Yellow Fever Vaccine , Yellow Fever , Yellow fever virus , Yellow Fever/immunology , Yellow Fever/epidemiology , Yellow Fever/virology , Humans , Brazil/epidemiology , Yellow fever virus/immunology , Yellow fever virus/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Yellow Fever Vaccine/immunology , Female , Adult , Middle Aged , Vaccination , Neutralization Tests , Young Adult , Aged , Adolescent
12.
Int J Infect Dis ; 143: 107017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521450

ABSTRACT

Yellow fever (YF) is a potentially lethal viral hemorrhagic fever that can be prevented with the 17D live attenuated YF vaccine. However, this vaccination can cause severe adverse reactions including vaccine-associated YF. Here, we describe the case of a 32-year-old female who was permanently immunosuppressed with an anti-CD20 antibody due to multiple sclerosis. Following YF vaccination, the patient developed a variety of symptoms such as febrile temperatures, muscle and joint pain, headaches, and dysuria. A vaccine-associated YF with viremia was diagnosed. To avoid a potentially severe course of the disease, sofosbuvir was used as antiviral treatment followed by the resolution of symptoms and serological response. As travelers with chronic diseases and immunosuppression will increasingly engage in long distance travel, this case demonstrates the importance of assessing patient history prior to the administration of live vaccines and points towards a possible therapeutic approach in those suffering from vaccine-associated YF.


Subject(s)
Antiviral Agents , Immunocompromised Host , Sofosbuvir , Yellow Fever Vaccine , Yellow Fever , Adult , Female , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Rituximab/adverse effects , Rituximab/therapeutic use , Sofosbuvir/therapeutic use , Sofosbuvir/adverse effects , Yellow Fever/immunology , Yellow Fever Vaccine/adverse effects , Yellow Fever Vaccine/immunology , Antigens, CD20/immunology , Antigens, CD20/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy
13.
Arch Dermatol Res ; 316(3): 96, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430244

ABSTRACT

Given the higher susceptibility to infectious disease in patients receiving immunosuppressive therapies for inflammatory dermatologic conditions, immunization is important in this population. While live vaccines protect against life-threatening diseases, they can be harmful in immunosuppressed patients given the risk of replication of the attenuated pathogen and adverse reactions. The utilization of live vaccines in immunosuppressed patients depends on multiple factors such as the vaccine and therapy regimen. To provide an overview of evidence-based recommendations for the use of live vaccines in patients receiving immunosuppressive therapies for dermatological conditions. A literature search of the PubMed database was performed using keywords live vaccine, live-attenuated vaccine, dermatology, immunosuppressed, and immunocompromised, and specific immunosuppressive therapies: corticosteroids, glucocorticoids, methotrexate, azathioprine, cyclosporine, mycophenolate mofetil, biologics. Relevant articles written in English were included. Using these keywords, 125 articles were reviewed, of which 28 were ultimately selected. Recommendations for live vaccines can be determined on a case-by-case basis. Measles, mumps, rubella, varicella (MMRV) vaccines may be safely administered to patients on low-dose immunosuppressive agents while the yellow fever vaccine is typically contraindicated. It may be safe to administer live MMRV boosters to children on immunosuppressive therapies and the live herpes zoster vaccine to patients on biologics. Given poor adherence to immunization guidelines in immunosuppressed patients, dermatologists have a critical role in educating patients and general practitioners regarding live vaccines. By reviewing a patient's vaccination history and following immunization guidelines prior to initiating immunosuppressive therapies, physicians can mitigate morbidity and mortality from vaccine-preventable diseases.


Subject(s)
Dermatology , Immunocompromised Host , Vaccination , Humans , Chickenpox Vaccine/administration & dosage , Chickenpox Vaccine/adverse effects , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/adverse effects , Vaccination/adverse effects , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/adverse effects , Yellow Fever Vaccine/administration & dosage , Yellow Fever Vaccine/adverse effects
15.
Lancet Infect Dis ; 24(6): 611-618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38335976

ABSTRACT

BACKGROUND: In 2016, outbreaks of yellow fever in Angola and the Democratic Republic of the Congo led to a global vaccine shortage. A fractional dose of 17DD yellow fever vaccine (containing one-fifth [0·1 ml] of the standard dose) was used during a pre-emptive mass campaign in August, 2016, in Kinshasa, Democratic Republic of the Congo among children aged 2 years and older and non-pregnant adults (ie, those aged 18 years and older). 1 year following vaccination, 97% of participants were seropositive; however, the long-term durability of the immune response is unknown. We aimed to conduct a prospective cohort study and invited participants enrolled in the previous evaluation to return 5 years after vaccination to assess durability of the immune response. METHODS: Participants returned to one of six health facilities in Kinshasa in 2021, where study staff collected a brief medical history and blood specimen. We assessed neutralising antibody titres against yellow fever virus using a plaque reduction neutralisation test with a 50% cutoff (PRNT50). Participants with a PRNT50 titre of 10 or higher were considered seropositive. The primary outcome was the proportion of participants seropositive at 5 years. FINDINGS: Among the 764 participants enrolled, 566 (74%) completed the 5-year visit. 5 years after vaccination, 539 (95·2%, 95% CI 93·2-96·7) participants were seropositive, including 361 (94·3%, 91·5-96·2) of 383 who were seronegative and 178 (97·3%, 93·8-98·8) of 183 who were seropositive at baseline. Geometric mean titres (GMTs) differed significantly across age groups for those who were initially seronegative with the lowest GMT among those aged 2-5 years and highest among those aged 13 years and older. INTERPRETATION: A fractional dose of the 17DD yellow fever vaccine induced an immunologic response with detectable titres at 5 years among the majority of participants in the Democratic Republic of the Congo. These findings support the use of fractional-dose vaccination for outbreak prevention with the potential for sustained immunity. FUNDING: Gavi, the Vaccine Alliance through the CDC Foundation. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral , Disease Outbreaks , Yellow Fever Vaccine , Yellow Fever , Humans , Democratic Republic of the Congo/epidemiology , Yellow Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/epidemiology , Prospective Studies , Yellow Fever Vaccine/immunology , Yellow Fever Vaccine/administration & dosage , Disease Outbreaks/prevention & control , Male , Female , Child , Child, Preschool , Adolescent , Adult , Antibodies, Viral/blood , Young Adult , Vaccination , Middle Aged , Antibodies, Neutralizing/blood , Yellow fever virus/immunology
17.
Nat Commun ; 15(1): 1696, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402207

ABSTRACT

The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.


Subject(s)
Dengue , Encephalitis Viruses, Tick-Borne , Yellow Fever Vaccine , Zika Virus Infection , Zika Virus , Humans , Antibodies, Viral , Antibodies, Neutralizing , Zika Virus Infection/prevention & control , Epitopes , Immunoglobulin G , Dengue/prevention & control
18.
Braz J Infect Dis ; 28(1): 103719, 2024.
Article in English | MEDLINE | ID: mdl-38341187

ABSTRACT

BACKGROUND: Safety data on the yellow fever vaccine 17DD in People Living with HIV (PLWH) are limited. This study explored the occurrence of post-vaccination 17DD viremia and the kinetics of hematological and liver laboratorial parameters in PLWH and HIV-uninfected participants [HIV(-) controls]. METHODS: We conducted a secondary analysis of a longitudinal interventional trial (NCT03132311) study that enrolled PLWH and HIV(-) controls to receive a single 17DD dose and were followed at 5, 30 and 365 days after vaccination in Rio de Janeiro, Brazil. 17DD viremia (obtained throughreal-time PCR and plaque forming units' assays), hematological (neutrophils, lymphocytes and platelets counts) and liver enzymes (ALT and AST) results were assessed at baseline and Days 5 and 30 post-vaccination. Logistic regression models explored factors associated with the odds of having positive 17DD viremia. Linear regression models explored variables associated with hematological and liver enzymes results at Day 5. RESULTS: A total of 202 PLWH with CD4 ≥ 200 cells/µL and 68 HIV(-) controls were included in the analyses. 17DD viremia was found in 20.0 % of the participants and was twice more frequent in PLWH than in HIV(-) controls (22.8% vs. 11.8 %, p-value < 0.001). Neutrophils, lymphocytes and platelets counts dropped at Day 5 and returned to baseline values at Day 30. 17DD viremia was associated with lower nadir of lymphocytes and platelets at Day 5. ALT levels did not increase post-vaccination and were not associated with 17DD viremia. CONCLUSIONS: 17DD was safe and well-tolerated in PLWH with CD4 ≥ 200 cells/µL. Post-vaccination viremia was more frequent in PLWH than in controls. Transient and self-limited decreases in lymphocytes and neutrophils occurred early after vaccination. 17DD viremia was associated with lower lymphocytes and platelets nadir after vaccination. We did not observe elevations in ALT after 17DD vaccination.


Subject(s)
HIV Infections , Yellow Fever Vaccine , Yellow Fever , Humans , Yellow Fever Vaccine/adverse effects , Yellow Fever/prevention & control , Longitudinal Studies , Viremia , Antibodies, Viral , Brazil , Vaccination/methods , Liver
20.
J Infect Dis ; 229(3): 786-794, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-36994927

ABSTRACT

BACKGROUND: Live attenuated vaccines alter immune functions and are associated with beneficial outcomes. We previously demonstrated that live attenuated yellow fever virus (YFV) vaccine (LA-YF-Vax) dampens T-cell receptor (TCR) signaling in vitro via an RNA-based mechanism. We examined study participants before and after LA-YF-Vax to assess TCR-mediated functions in vivo. METHODS: Serum samples and peripheral blood mononuclear cells (PBMCs) were obtained before and after LA-YF-Vax (with or without additional vaccines) or quadrivalent influenza vaccine. TCR-mediated activation was determined by interleukin 2 release or phosphorylation of the lymphocyte-specific Src kinase. TCR-regulating phosphatase (protein tyrosine phosphatase receptor type E [PTPRE]) expression was also measured. RESULTS: Compared with prevaccination findings, LA-YF-Vax recipient PBMCs demonstrated transient reduction in interleukin 2 release after TCR stimulation and PTPRE levels, unlike in control participants who received quadrivalent influenza vaccine. YFV was detected in 8 of 14 participants after LA-YF-Vax. After incubation of healthy donor PBMCs in serum-derived extracellular vesicles prepared from LA-YF-Vax recipients, TCR signaling and PTPRE levels were reduced after vaccination, even in participants without detectable YFV RNA. CONCLUSIONS: LA-YF-Vax reduces TCR functions and PTPRE levels after vaccination. Extracellular vesicles from serum recapitulated this effect in healthy cells. This likely contributes to the reduced immunogenicity for heterologous vaccines after LA-YF-Vax administration. Identification of specific immune mechanisms related to vaccines should contribute to understanding of the "off-target," beneficial effects of live vaccines.


Subject(s)
Influenza Vaccines , Yellow Fever Vaccine , Humans , Interleukin-2 , Leukocytes, Mononuclear , Antibodies, Viral , Yellow fever virus , Antigens, Viral , Vaccines, Combined , Receptors, Antigen, T-Cell , RNA , Vaccines, Attenuated
SELECTION OF CITATIONS
SEARCH DETAIL
...