Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.341
Filter
1.
Mol Biol Rep ; 51(1): 722, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829419

ABSTRACT

BACKGROUND: Yersinia pestis is a bacterium that causes the disease plague. It has caused the deaths of many people throughout history. The bacterium possesses several virulence factors (pPla, pFra, and PYV). PFra plasmid encodes fraction 1 (F1) capsular antigen. F1 protein protects the bacterium against host immune cells through phagocytosis process. This protein is specific for Y. pestis. Many diagnostic techniques are based on molecular and serological detection and quantification of F1 protein in different food and clinical samples. Aptamers are small nucleic acid sequences that can act as specific ligands for many targets.This study, aimed to isolate the high-affinity ssDNA aptamers against F1 protein. METHODS AND RESULTS: In this study, SELEX was used as the main strategy in screening aptamers. Moreover, enzyme-linked aptamer sorbent assay (ELASA) and surface plasmon resonance (SPR) were used to determine the affinity and specificity of obtained aptamers to F1 protein. The analysis showed that among the obtained aptamers, the three aptamers of Yer 21, Yer 24, and Yer 25 were selected with a KD value of 1.344E - 7, 2.004E - 8, and 1.68E - 8 M, respectively. The limit of detection (LoD) was found to be 0.05, 0.076, and 0.033 µg/ml for Yer 21, Yer 24, and Yer 25, respectively. CONCLUSION: This study demonstrated that the synthesized aptamers could serve as effective tools for detecting and analyzing the F1 protein, indicating their potential value in future diagnostic applications.


Subject(s)
Aptamers, Nucleotide , Bacterial Proteins , SELEX Aptamer Technique , Yersinia pestis , Yersinia pestis/genetics , SELEX Aptamer Technique/methods , Bacterial Proteins/genetics , Surface Plasmon Resonance/methods , Humans , Plague/diagnosis , Plague/microbiology , Antigens, Bacterial
2.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793629

ABSTRACT

Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Yersinia pestis , Yersinia pestis/virology , Yersinia pestis/genetics , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification , Animals , Evolution, Molecular , Dogs , Plague/microbiology
3.
PLoS Negl Trop Dis ; 18(5): e0012167, 2024 May.
Article in English | MEDLINE | ID: mdl-38701065

ABSTRACT

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, is a zoonotic disease that poses considerable threats to human health. Nucleic acid tests are crucial for plague surveillance and the rapid detection of Y. pestis. However, inhibitors in complex samples such as soil and animal tissues often hamper nucleic acid detection, leading to a reduced rate of identifying low concentrations of Y. pestis. To address this challenge, we developed a sensitive and specific droplet digital polymerase chain reaction (ddPCR) assay for detecting Y. pestis DNA from soil and animal tissue samples. METHODS: Three genes (ypo2088, caf1, and pla) from Y. pestis were used to develop a multi-target ddPCR assay. The limits of detection (LoD), reproducibility, and specificity were assessed for bacterial genomic DNA samples. The ability of the assay to detect low concentrations of Y. pestis DNA from simulated soil and mouse liver tissue samples was respectively evaluated and compared with that of quantitative real-time PCR (qPCR). RESULTS: The results showed that the ddPCR LoDs ranged from 6.2 to 15.4 copies/reaction for the target genes, with good reproducibility and high specificity for Y. pestis. By testing 130 soil and mouse liver tissue samples spiked with Y. pestis, the ddPCR assay exhibited a better sensitivity than that of the qPCR assay used in the study, with LoDs of 102 colony forming units (CFU)/100 mg soil and 103 CFU/20 mg liver. Moreover, the assay presented good quantitative linearity (R2 = 0.99) for Y. pestis at 103-106 CFU/sample for soil and liver samples. CONCLUSION: The ddPCR assay presented good performance for detecting Y. pestis DNA from soil and mouse tissue samples, showing great potential for improving the detection rate of low concentrations of Y. pestis in plague surveillance and facilitating the early diagnosis of plague cases.


Subject(s)
Plague , Sensitivity and Specificity , Soil Microbiology , Yersinia pestis , Yersinia pestis/genetics , Yersinia pestis/isolation & purification , Animals , Plague/diagnosis , Plague/microbiology , Mice , Polymerase Chain Reaction/methods , DNA, Bacterial/genetics , Reproducibility of Results , Bacterial Proteins/genetics , Liver/microbiology , Limit of Detection , Humans
4.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547321

ABSTRACT

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Subject(s)
Plague Vaccine , Vaccines , Yersinia pestis , Humans , Animals , Mice , Yersinia pestis/genetics , Open Reading Frames , Plague Vaccine/genetics , Cytokines/genetics
5.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38555818

ABSTRACT

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Subject(s)
Plague , Yersinia pestis , Yersinia pestis/immunology , Yersinia pestis/genetics , Humans , Plague/prevention & control , Plague/immunology , Plague Vaccine/immunology , Plague Vaccine/genetics , Genome, Bacterial , Vaccine Development , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Vaccines, Synthetic/immunology , Animals
6.
BMC Genomics ; 25(1): 262, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459433

ABSTRACT

Plague, as an ancient zoonotic disease caused by Yersinia pestis, has brought great disasters. The natural plague focus of Marmota himalayana in the Qinghai-Tibet Plateau is the largest, which has been constantly active and the leading source of human plague in China for decades. Understanding the population genetics of M. himalayana and relating that information to the biogeographic distribution of Yersinia pestis and plague outbreaks are greatly beneficial for the knowledge of plague spillover and arecrucial for pandemic prevention. In the present research, we assessed the population genetics of M. himalayana. We carried out a comparative study of plague outbreaks and the population genetics of M. himalayana on the Qinghai-Tibet Plateau. We found that M. himalayana populations are divided into two main clusters located in the south and north of the Qinghai-Tibet Plateau. Fourteen DFR genomovars of Y. pestis were found and exhibited a significant region-specific distribution. Additionally, the increased genetic diversity of plague hosts is positively associated with human plague outbreaks. This insight gained can improve our understanding of biodiversity for pathogen spillover and provide municipally directed targets for One Health surveillance development, which will be an informative next step toward increased monitoring of M. himalayana dynamics.


Subject(s)
Marmota , Yersinia pestis , Animals , Humans , Tibet/epidemiology , China/epidemiology , Disease Outbreaks , Yersinia pestis/genetics , Genetic Variation
7.
Virulence ; 15(1): 2316439, 2024 12.
Article in English | MEDLINE | ID: mdl-38389313

ABSTRACT

The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.


Subject(s)
Plague , Yersinia Infections , Yersinia pestis , Animals , Humans , Yersinia/genetics , Virulence/genetics , Yersinia pestis/genetics , Plague/microbiology , Yersinia Infections/microbiology
8.
Emerg Infect Dis ; 30(2): 289-298, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270131

ABSTRACT

Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.


Subject(s)
Epidemics , Plague , Yersinia pestis , Humans , Plague/epidemiology , Yersinia pestis/genetics , Madagascar/epidemiology , Genomics
9.
Front Cell Infect Microbiol ; 13: 1288371, 2023.
Article in English | MEDLINE | ID: mdl-38089818

ABSTRACT

Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.


Subject(s)
Aspartate Aminotransferases , Plague , Yersinia pestis , Codon, Nonsense/metabolism , Phylogeny , Plague/microbiology , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/genetics
10.
PeerJ ; 11: e16007, 2023.
Article in English | MEDLINE | ID: mdl-37780382

ABSTRACT

Background: Yersinia pestis, a Gram-negative bacterium, is the causative agent of plague. Y. pestis is a zoonotic pathogen that occasionally infects humans and became endemic in the western United States after spreading from California in 1899. Methods: To better understand evolutionary patterns in Y. pestis from the southwestern United States, we sequenced and analyzed 22 novel genomes from New Mexico. Analytical methods included, assembly, multiple sequences alignment, phylogenetic tree reconstruction, genotype-phenotype correlation, and selection pressure. Results: We identified four genes, including Yscp and locus tag YPO3944, which contained codons undergoing negative selection. We also observed 42 nucleotide sites displaying a statistically significant skew in the observed residue distribution based on the year of isolation. Overall, the three genes with the most statistically significant variations that associated with metadata for these isolates were sapA, fliC, and argD. Phylogenetic analyses point to a single introduction of Y. pestis into the United States with two subsequent, independent movements into New Mexico. Taken together, these analyses shed light on the evolutionary history of this pathogen in the southwestern US over a focused time range and confirm a single origin and introduction into North America.


Subject(s)
Plague , Yersinia pestis , Humans , Yersinia pestis/genetics , Phylogeny , New Mexico/epidemiology , Plague/epidemiology , Sequence Analysis
11.
Immunogenetics ; 75(6): 517-530, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37853246

ABSTRACT

Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.


Subject(s)
Plague , Siphonaptera , Yersinia pestis , Animals , Humans , Plague/genetics , Plague/epidemiology , Tanzania/epidemiology , Immunogenetics , Yersinia pestis/genetics , Siphonaptera/genetics , Murinae/genetics , Antibodies
12.
PLoS Negl Trop Dis ; 17(8): e0011401, 2023 08.
Article in English | MEDLINE | ID: mdl-37607174

ABSTRACT

BACKGROUND: Plague, caused by the bacterium Yersinia pestis, remains an important disease in Madagascar, where the oriental rat flea, Xenopsylla cheopis, is a primary vector. To control fleas, synthetic pyrethroids (SPs) have been used for >20 years, resulting in resistance in many X. cheopis populations. The most common mechanisms of SP resistance are target site mutations in the voltage-gated sodium channel (VGSC) gene. METHODOLOGY/PRINCIPAL FINDINGS: We obtained 25 collections of X. cheopis from 22 locations across Madagascar and performed phenotypic tests to determine resistance to deltamethrin, permethrin, and/or dichlorodiphenyltrichloroethane (DDT). Most populations were resistant to all these insecticides. We sequenced a 535 bp segment of the VGSC gene and identified two different mutations encoding distinct substitutions at amino acid position 1014, which is associated with knockdown resistance (kdr) to SPs in insects. Kdr mutation L1014F occurred in all 25 collections; a rarer mutation, L1014H, was found in 12 collections. There was a significant positive relationship between the frequency of kdr alleles and the proportion of individuals surviving exposure to deltamethrin. Phylogenetic comparisons of 12 VGSC alleles in Madagascar suggested resistant alleles arose from susceptible lineages at least three times. Because genotype can reasonably predict resistance phenotype, we developed a TaqMan PCR assay for the rapid detection of kdr resistance alleles. CONCLUSIONS/SIGNIFICANCE: Our study provides new insights into VGSC mutations in Malagasy populations of X. cheopis and is the first to report a positive correlation between VGSC genotypes and SP resistance phenotypes in fleas. Widespread occurrence of these two SP resistance mutations in X. cheopis populations in Madagascar reduces the viability of these insecticides for flea control. However, the TaqMan assay described here facilitates rapid detection of kdr mutations to inform when use of these insecticides is still warranted to reduce transmission of plague.


Subject(s)
Flea Infestations , Insecticides , Plague , Siphonaptera , Xenopsylla , Yersinia pestis , Animals , Rats , Humans , Xenopsylla/genetics , Insecticides/pharmacology , Madagascar , Phylogeny , Yersinia pestis/genetics , Mutation
13.
Commun Biol ; 6(1): 847, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582843

ABSTRACT

Plague, caused by Yersinia pestis, is a zoonotic disease that can reemerge and cause outbreaks following decades of latency in natural plague foci. However, the genetic diversity and spread pattern of Y. pestis during these epidemic-silent cycles remain unclear. In this study, we analyze 356 Y. pestis genomes isolated between 1952 and 2016 in the Yunnan Rattus tanezumi plague focus, China, covering two epidemic-silent cycles. Through high-resolution genomic epidemiological analysis, we find that 96% of Y. pestis genomes belong to phylogroup 1.ORI2 and are subdivided into two sister clades (Sublineage1 and Sublineage2) characterized by different temporal-spatial distributions and genetic diversity. Most of the Sublineage1 strains are isolated from the first epidemic-silent cycle, while Sublineage2 strains are predominantly from the second cycle and revealing a west to east spread. The two sister clades evolved in parallel from a common ancestor and independently lead to two separate epidemics, confirming that the pathogen responsible for the second epidemic following the silent interval is not a descendant of the causative strain of the first epidemic. Our results provide a mechanism for defining epidemic-silent cycles in natural plague foci, which is valuable in the prevention and control of future plague outbreaks.


Subject(s)
Epidemics , Plague , Yersinia pestis , Animals , Rats , Plague/epidemiology , Yersinia pestis/genetics , China/epidemiology , Genotype , Genomics
14.
Microbiol Spectr ; 11(4): e0020323, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37466430

ABSTRACT

Yersinia pestis is the etiological agent of plague. Marmota himalayana of the Qinghai-Tibetan plateau is the primary host of flea-borne Y. pestis. This study is the report of isolation of Mu-like bacteriophages of Y. pestis from M. himalayana. The isolation and characterization of four Mu-like phages of Y. pestis were reported, which were named as vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 according to their morphology. Comparative genome analysis revealed that vB_YpM_3, vB_YpM_5, vB_YpM_6, and vB_YpM_23 are phylogenetically closest to Escherichia coli phages Mu, D108 and Shigella flexneri phage SfMu. The role of LPS core structure of Y. pestis in the phages' receptor was pinpointed. All the phages exhibit "temperature dependent infection," which is independent of the growth temperature of the host bacteria and dependent of the temperature of phage infection. The phages lyse the host bacteria at 37°C, but enter the lysogenic cycle and become prophages in the chromosome of the host bacteria at 26°C. IMPORTANCE Mu-like bacteriophages of Y. pestis were isolated from M. himalayana of the Qinghai-Tibetan plateau in China. These bacteriophages have a unique temperature dependent life cycle, follow a lytic cycle at the temperature of warm-blooded mammals (37°Ð¡), and enter the lysogenic cycle at the temperature of its flea-vector (26°Ð¡). A switch from the lysogenic to the lytic cycle occurred when lysogenic bacteria were incubated from lower temperature to higher temperature (initially incubating at 26°C and shifting to 37°C). It is speculated that the temperature dependent lifestyle of bacteriophages may affect the population dynamics and pathogenicity of Y. pestis.


Subject(s)
Bacteriophages , Plague , Siphonaptera , Yersinia pestis , Animals , Yersinia , Bacteriophages/genetics , Temperature , Plague/microbiology , Yersinia pestis/genetics , Siphonaptera/microbiology , Bacteriophage Receptors , Mammals
15.
EMBO Rep ; 24(10): e57369, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37501563

ABSTRACT

Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown. Identification of this mechanism has been difficult because conventional mutagenesis approaches are unable to inhibit trans-complementation by secreted factors between mutants. To overcome this obstacle, we utilized a technique called droplet Tn-seq (dTn-seq), which uses microfluidics to isolate individual transposon mutants in oil droplets, eliminating trans-complementation between bacteria. Using this approach, we first demonstrated the applicability of dTn-seq to identify genes with secreted functions. We then applied dTn-seq to identify an AcrAB efflux system as required for growth in metal-limited conditions. Finally, we showed this efflux system is the primary yersiniabactin secretion mechanism and required for virulence during bubonic and pneumonic plague. Together, these studies have revealed the yersiniabactin secretion mechanism that has eluded researchers for over 30 years and identified a potential therapeutic target for bacteria that use yersiniabactin for metal acquisition.


Subject(s)
Plague , Yersinia pestis , Humans , Yersinia pestis/genetics , Plague/genetics , Plague/microbiology , Phenols , Thiazoles/pharmacology , Metals , Bacterial Proteins/genetics
16.
Proc Biol Sci ; 290(2003): 20230622, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37464758

ABSTRACT

Yersinia pestis is the causative agent of at least three major plague pandemics (Justinianic, Medieval and Modern). Previous studies on ancient Y. pestis genomes revealed that several genomic alterations had occurred approximately 5000-3000 years ago and contributed to the remarkable virulence of this pathogen. How a subset of strains evolved to cause the Modern pandemic is less well-understood. Here, we examined the virulence-associated prophage (YpfΦ), which had been postulated to be exclusively present in the genomes of strains associated with the Modern pandemic. The analysis of two new Y. pestis genomes from medieval/early modern Denmark confirmed that the phage is absent from the genome of strains dating to this time period. An extended comparative genome analysis of over 300 strains spanning more than 5000 years showed that the prophage is found in the genomes of modern strains only and suggests an integration into the genome during recent Y. pestis evolution. The phage-encoded Zot protein showed structural homology to a virulence factor of Vibrio cholerae. Similar to modern Y. pestis, we observed phages with a common origin to YpfΦ in individual strains of other bacterial species. Our findings present an updated view on the prevalence of YpfΦ, which might contribute to our understanding of the host spectrum, geographical spread and virulence of Y. pestis responsible for the Modern pandemic.


Subject(s)
Bacteriophages , Plague , Yersinia pestis , Humans , Yersinia pestis/genetics , Prophages/genetics , Pandemics/history , Virulence/genetics , Plague/epidemiology
17.
Comp Immunol Microbiol Infect Dis ; 100: 102025, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37523875

ABSTRACT

The relevance of the problem of the stated topic lies in the fact that the causative agent of the plague infection demonstrates high survival while maintaining high virulence in the territories, which are enzootic in terms of the plague. The study aimed to investigate the geographic distribution and genetic diversity of the plague pathogen in endemic regions through molecular genetic research. The work included the results of laboratory studies of 3058 samples, including soil - 1154, burrow substrates - 549, the contents of the feeding chamber - 349, bone remains - 18, biological objects - 988 samples of sera and suspensions from carriers and vectors of plague infection collected from 14 autonomous plague foci of Kazakhstan for the period 2021-2022. The leading method in the study was a laboratory experiment, thanks to which, using a new advanced technology on a microbiological analyser VITEK 2 COMPACT 30, it was possible to study pathogenic and non-pathogenic strains of the genus Yersinia isolated during field experiment. As a result of experimental work, it was shown that during a long inter-epizootic period, the plague pathogen can persist in the soil in symbiosis with soil microorganisms, and in this area, it chooses soil with a low-quality index of 10 points, where soils with a low total microbial number and species landscape prevail.


Subject(s)
Plague , Yersinia pestis , Animals , Plague/epidemiology , Plague/microbiology , Plague/veterinary , Yersinia pestis/genetics , Kazakhstan/epidemiology , Soil , Virulence
18.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515171

ABSTRACT

Phages of highly pathogenic bacteria represent an area of growing interest for bacterial detection and identification and subspecies typing, as well as for phage therapy and environmental decontamination. Eight new phages-YpEc56, YpEc56D, YpEc57, YpEe58, YpEc1, YpEc2, YpEc11, and YpYeO9-expressing lytic activity towards Yersinia pestis revealed a virion morphology consistent with the Podoviridae morphotype. These phages lyse all 68 strains from 2 different sets of Y. pestis isolates, thus limiting their potential application for subtyping of Y. pestis strains but making them rather promising in terms of infection control. Two phages-YpYeO9 and YpEc11-were selected for detailed studies based on their source of isolation and lytic cross activity towards other Enterobacteriaceae. The full genome sequencing demonstrated the virulent nature of new phages. Phage YpYeO9 was identified as a member of the Teseptimavirus genus and YpEc11 was identified as a member of the Helsettvirus genus, thereby representing new species. A bacterial challenge assay in liquid microcosm with a YpYeO9/YpEc11 phage mixture showed elimination of Y. pestis EV76 during 4 h at a P/B ratio of 1000:1. These results, in combination with high lysis stability results of phages in liquid culture, the low frequency of formation of phage resistant mutants, and their viability under different physical-chemical factors indicate their potential for their practical use as an antibacterial mean.


Subject(s)
Bacteriophages , Podoviridae , Yersinia pestis , Yersinia pestis/genetics , Podoviridae/genetics , Anti-Bacterial Agents
19.
PLoS Pathog ; 19(7): e1011404, 2023 07.
Article in English | MEDLINE | ID: mdl-37463152

ABSTRACT

Pestis secunda (1356-1366 CE) is the first of a series of plague outbreaks in Europe that followed the Black Death (1346-1353 CE). Collectively this period is called the Second Pandemic. From a genomic perspective, the majority of post-Black Death strains of Yersinia pestis thus far identified in Europe display diversity accumulated over a period of centuries that form a terminal sub-branch of the Y. pestis phylogeny. It has been debated if these strains arose from local evolution of Y. pestis or if the disease was repeatedly reintroduced from an external source. Plague lineages descended from the pestis secunda, however, are thought to have persisted in non-human reservoirs outside Europe, where they eventually gave rise to the Third Pandemic (19th and 20th centuries). Resolution of competing hypotheses on the origins of the many post-Black Death outbreaks has been hindered in part by the low representation of Y. pestis genomes in archaeological specimens, especially for the pestis secunda. Here we report on five individuals from Germany that were infected with lineages of plague associated with the pestis secunda. For the two genomes of high coverage, one groups within the known diversity of genotypes associated with the pestis secunda, while the second carries an ancestral genotype that places it earlier. Through consideration of historical sources that explore first documentation of the pandemic in today's Central Germany, we argue that these data provide robust evidence to support a post-Black Death evolution of the pathogen within Europe rather than a re-introduction from outside. Additionally, we demonstrate retrievability of Y. pestis DNA in post-cranial remains and highlight the importance of hypothesis-free pathogen screening approaches in evaluations of archaeological samples.


Subject(s)
Plague , Yersinia pestis , Humans , Yersinia pestis/genetics , Plague/epidemiology , DNA, Bacterial/genetics , Genome, Bacterial , Europe/epidemiology , Phylogeny
20.
Front Cell Infect Microbiol ; 13: 1174510, 2023.
Article in English | MEDLINE | ID: mdl-37305418

ABSTRACT

Plague caused by Yersinia pestis remains a public health threat worldwide. Because multidrug-resistant Y. pestis strains have been found in both humans and animals, phage therapy has attracted increasing attention as an alternative strategy against plague. However, phage resistance is a potential drawback of phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be investigated. In this study, we obtained a bacteriophage-resistant strain of Y. pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion 15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide biosynthesis. The waaA* mutation leads to decreased phage adsorption because of the failure to synthesize the lipopolysaccharide core. The mutation in cmk (encoding cytidine monophosphate kinase) increased phage resistance, independent of phage adsorption, and caused in vitro growth defects in Y. pestis. The mutation in ail inhibited phage adsorption while restoring the growth of the waaA null mutant and accelerating the growth of the cmk null mutant. Our results confirmed that mutations in the WaaA-Cmk-Ail cascade in Y. pestis contribute to resistance against bacteriophage. Our findings help in understanding the interactions between Y. pestis and its phages.


Subject(s)
Bacteriophages , Plague , Yersinia pestis , Animals , Humans , Yersinia pestis/genetics , Lipopolysaccharides , Mutation , Bacteriophages/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...