Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 3493, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568758

ABSTRACT

Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Oncorhynchus mykiss/genetics , Yersinia Infections/virology , Yersinia ruckeri/virology , Animals , Fish Diseases/virology , Host Specificity/immunology , Phylogeny , Serogroup , Virulence/genetics , Virulence/physiology
2.
Viruses ; 12(6)2020 06 05.
Article in English | MEDLINE | ID: mdl-32517038

ABSTRACT

YerA41 is a Myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified in such a way that it is an unsuitable template for PCR amplification and for conventional sequencing. To determine the YerA41 genome sequence, we performed RNA-sequencing from phage-infected Y. ruckeri cells at different time points post-infection. The host-genome specific reads were subtracted and de novo assembly was performed on the remaining unaligned reads. This resulted in nine phage-specific scaffolds with a total length of 143 kb that shared only low level and scattered identity to known sequences deposited in DNA databases. Annotation of the sequences revealed 201 predicted genes, most of which found no homologs in the databases. Proteome studies identified altogether 63 phage particle-associated proteins. The RNA-sequencing data were used to characterize the transcriptional control of YerA41 and to investigate its impact on the bacterial gene expression. Overall, our results indicate that RNA-sequencing can be successfully used to obtain the genomic sequence of non-sequencable phages, providing simultaneous information about the phage-host interactions during the process of infection.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Yersinia ruckeri/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Phylogeny , RNA, Viral/genetics , Sequence Analysis, RNA
3.
J Fish Dis ; 43(2): 285-293, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31828808

ABSTRACT

A lytic bacteriophage (φNC10) specific to serotype O1 Yersinia ruckeri has been identified and evaluated as a model to assess the potential use of bacteriophages and their products for disease control in aquaculture. Electron microscopy of purified φNC10 revealed a virion particle with a small (70 nm) polyhedral head and short tail. φNC10 infected only serotype O1 strains of Y. ruckeri and failed to bind a defined Y. ruckeri mutant strain lacking O1 lipopolysaccharides (O1-LPS), suggesting that φNC10 uses O1-LPS as its receptor. In addition, spontaneous φNC10-resistant mutants of Y. ruckeri exhibited defects in O1-LPS production and were sensitive to rainbow trout serum. Purified φNC10 displayed a polysaccharide depolymerase activity capable of degrading Y. ruckeri O1-LPS and thereby sensitizing Y. ruckeri to the bactericidal effects of rainbow trout serum. The φNC10-associated polysaccharide depolymerase activity also reduced the ability of Y. ruckeri cells to cause mortality following intraperitoneal injection into rainbow trout. These data demonstrate a potential utility of φNC10 and its associated polysaccharide depolymerase activity for Y. ruckeri disease prevention.


Subject(s)
Bacteriophages/physiology , Fish Diseases/prevention & control , Oncorhynchus mykiss , Yersinia Infections/veterinary , Yersinia ruckeri/pathogenicity , Animals , Aquaculture , Fish Diseases/microbiology , Lipopolysaccharides/metabolism , Serogroup , Virulence , Yersinia Infections/microbiology , Yersinia Infections/prevention & control , Yersinia ruckeri/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...