Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
1.
Nature ; 626(7998): 367-376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092041

ABSTRACT

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Subject(s)
Embryonic Development , Germ Layers , Hematopoiesis , Yolk Sac , Humans , Embryo Implantation , Endoderm/cytology , Endoderm/embryology , Germ Layers/cytology , Germ Layers/embryology , Yolk Sac/cytology , Yolk Sac/embryology , Mesoderm/cytology , Mesoderm/embryology , Induced Pluripotent Stem Cells/cytology , Amnion/cytology , Amnion/embryology , Embryoid Bodies/cytology , Cell Lineage , Developmental Biology/methods , Developmental Biology/trends
2.
Nature ; 622(7983): 562-573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673118

ABSTRACT

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Subject(s)
Embryo Implantation , Embryo, Mammalian , Embryonic Development , Human Embryonic Stem Cells , Humans , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Fertilization , Gastrulation , Germ Layers/cytology , Germ Layers/embryology , Human Embryonic Stem Cells/cytology , Trophoblasts/cytology , Yolk Sac/cytology , Yolk Sac/embryology , Giant Cells/cytology
3.
Science ; 381(6659): eadd7564, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590359

ABSTRACT

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Subject(s)
Embryonic Development , Yolk Sac , Female , Humans , Pregnancy , Blood Coagulation/genetics , Macrophages , Yolk Sac/cytology , Yolk Sac/metabolism , Embryonic Development/genetics , Atlases as Topic , Gene Expression , Gene Expression Profiling , Hematopoiesis/genetics , Liver/embryology
4.
Nature ; 622(7983): 574-583, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37369348

ABSTRACT

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Subject(s)
Cell Lineage , Embryo Implantation , Embryonic Development , Pluripotent Stem Cells , Female , Humans , Pregnancy , Cell Differentiation , Germ Layers/cytology , Germ Layers/enzymology , Human Embryonic Stem Cells/cytology , Placenta/cytology , Pluripotent Stem Cells/cytology , Primitive Streak/cytology , Primitive Streak/embryology , Yolk Sac/cytology , Yolk Sac/embryology
5.
J Cell Biol ; 221(6)2022 06 06.
Article in English | MEDLINE | ID: mdl-35482005

ABSTRACT

Tissue-resident macrophages play essential functions in the maintenance of tissue homeostasis and repair. Recently, the endocardium has been reported as a de novo hemogenic site for the contribution of hematopoietic cells, including cardiac macrophages, during embryogenesis. These observations challenge the current consensus that hematopoiesis originates from the hemogenic endothelium within the yolk sac and dorsal aorta. Whether the developing endocardium has such a hemogenic potential requires further investigation. Here, we generated new genetic tools to trace endocardial cells and reassessed their potential contribution to hematopoietic cells in the developing heart. Fate-mapping analyses revealed that the endocardium contributed minimally to cardiac macrophages and circulating blood cells. Instead, cardiac macrophages were mainly derived from the endothelium during primitive/transient definitive (yolk sac) and definitive (dorsal aorta) hematopoiesis. Our findings refute the concept of endocardial hematopoiesis, suggesting that the developing endocardium gives rise minimally to hematopoietic cells, including cardiac macrophages.


Subject(s)
Cell Lineage , Heart , Macrophages , Myocardium , Animals , Aorta/cytology , Endocardium/cytology , Heart/embryology , Hematopoiesis/genetics , Myocardium/cytology , Yolk Sac/cytology
6.
J Exp Med ; 219(3)2022 03 07.
Article in English | MEDLINE | ID: mdl-34928315

ABSTRACT

In the mouse, the first hematopoietic cells are generated in the yolk sac from the primitive, erythro-myeloid progenitor (EMP) and lymphoid programs that are specified before the emergence of hematopoietic stem cells. While many of the yolk sac-derived populations are transient, specific immune cell progeny seed developing tissues, where they function into adult life. To access the human equivalent of these lineages, we modeled yolk sac hematopoietic development using pluripotent stem cell differentiation. Here, we show that the combination of Activin A, BMP4, and FGF2 induces a population of KDR+CD235a/b+ mesoderm that gives rise to the spectrum of erythroid, myeloid, and T lymphoid lineages characteristic of the mouse yolk sac hematopoietic programs, including the Vδ2+ subset of γ/δ T cells that develops early in the human embryo. Through clonal analyses, we identified a multipotent hematopoietic progenitor with erythroid, myeloid, and T lymphoid potential, suggesting that the yolk sac EMP and lymphoid lineages may develop from a common progenitor.


Subject(s)
Hematopoiesis , Models, Biological , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Yolk Sac/cytology , Animals , Biomarkers , Cell Differentiation/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis/genetics , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
7.
Nat Commun ; 12(1): 7019, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857757

ABSTRACT

Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta-gonad-mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Myeloid Progenitor Cells/metabolism , Vesicular Transport Proteins/genetics , Yolk Sac/metabolism , Animals , Cell Differentiation , Embryo, Mammalian , Enhancer of Zeste Homolog 2 Protein/deficiency , Epigenesis, Genetic , Erythroid Cells/cytology , Female , Fetus , Genes, Reporter , Hematopoiesis/genetics , Liver/cytology , Liver/growth & development , Liver/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells/cytology , Myeloid Progenitor Cells/pathology , Primary Cell Culture , Vesicular Transport Proteins/metabolism , Wnt Signaling Pathway , Yolk Sac/cytology , Yolk Sac/growth & development , Red Fluorescent Protein
8.
Exp Hematol ; 103: 30-39.e2, 2021 11.
Article in English | MEDLINE | ID: mdl-34437953

ABSTRACT

Exogenous growth factors play an important role in mediating hematopoietic differentiation of human pluripotent stem cells. We explored the role of different factors in early human blood cell production using blast colony formation in methylcellulose as a surrogate assay for yolk sac hematopoiesis. A reporter cell line that read out endothelial (SOX17+) and hematopoietic (RUNX1C+) progenitors facilitated the identification of basic fibroblast growth and vascular endothelial growth factor as critical signals for the progression of mesoderm into endothelium. Bone morphogenetic protein 4 was needed for the subsequent generation of blood from hemogenic endothelium, and this was antagonized by Activin A or high concentrations of the WNT agonist CHIR-99021. Manipulations of the Hedgehog pathway or inhibition of Notch signaling reduced blast colony frequency but did not perturb cell differentiation. These data help to define distinct roles for prerequisite growth factors that commit mesoderm to hemogenic endothelium and subsequently allocate cells to blood lineages.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Fibroblast Growth Factor 2/metabolism , Hematopoiesis , Vascular Endothelial Growth Factor A/metabolism , Yolk Sac/cytology , Cell Line , Endothelium/cytology , Endothelium/metabolism , Humans , Mesoderm/cytology , Mesoderm/metabolism , Yolk Sac/metabolism
9.
Immunity ; 54(7): 1433-1446.e5, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34062116

ABSTRACT

The extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks.


Subject(s)
Cell Differentiation/physiology , Erythrocytes/cytology , Megakaryocytes/cytology , Myeloid Cells/cytology , Stem Cells/cytology , Yolk Sac/cytology , Animals , Cell Lineage/physiology , Cells, Cultured , Embryo, Mammalian/cytology , Female , Granulocytes/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology , Multipotent Stem Cells/cytology , Pregnancy
10.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Article in English | MEDLINE | ID: mdl-33420489

ABSTRACT

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Subject(s)
Embryonic Stem Cells/cytology , Hemangioblasts/cytology , Mesoderm/cytology , T-Box Domain Proteins/physiology , Yolk Sac/cytology , Animals , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Embryonic Stem Cells/metabolism , Female , Hemangioblasts/metabolism , Male , Mesoderm/metabolism , Mice, Knockout , Pregnancy , RNA-Seq , Single-Cell Analysis , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Yolk Sac/metabolism
11.
Exp Hematol ; 95: 13-22, 2021 03.
Article in English | MEDLINE | ID: mdl-33440185

ABSTRACT

Erythropoiesis is an intricate process starting in hematopoietic stem cells and leading to the daily production of 200 billion red blood cells (RBCs). Enucleation is a greatly complex and rate-limiting step during terminal maturation of mammalian RBC production involving expulsion of the nucleus from the orthochromatic erythroblasts, resulting in the formation of reticulocytes. The dynamic enucleation process involves many factors ranging from cytoskeletal proteins to transcription factors to microRNAs. Lack of optimum terminal erythroid maturation and enucleation has been an impediment to optimum RBC production ex vivo. Major efforts in the past two decades have exposed some of the mechanisms that govern the enucleation process. This review focuses in detail on mechanisms implicated in enucleation and discusses the future perspectives of this fascinating process.


Subject(s)
Cell Nucleus , Erythroblasts/ultrastructure , Erythrocytes/ultrastructure , Erythropoiesis , Reticulocytes/ultrastructure , Animals , Birds/blood , Calcium/physiology , Chromatin/ultrastructure , Colony-Forming Units Assay , Computational Biology , Cytokines/physiology , Cytoskeletal Proteins/physiology , DNA-Binding Proteins/physiology , Erythroblasts/cytology , Erythrocytes/cytology , Intercellular Signaling Peptides and Proteins/physiology , Mammals/blood , Mice , MicroRNAs/physiology , Proto-Oncogene Proteins/physiology , Receptors, Thyroid Hormone/physiology , Repressor Proteins/physiology , Reticulocytes/cytology , Transcription Factors/physiology , Transport Vesicles/physiology , Yolk Sac/cytology , rho GTP-Binding Proteins/physiology
12.
J Ethnopharmacol ; 269: 113747, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33359185

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liang-Ge-San (LGS), a traditional Chinese medicine (TCM) formula, is usually used in acute inflammatory diseases in China. AIM OF THE STUDY: This study aims to detect the optimal combination of anti-inflammatory components from LGS. MATERIALS AND METHODS: Four mainly representative components (phillyrin, emodin, baicalin, and liquiritin) from LGS were chosen. The optimal combination was investigated by orthogonal design study. Zebrafish inflammation model was established by lipopolysaccharide (LPS)-yolk microinjection, and then the anti-inflammatory activities of different combinations were determined by survival analysis, changes on inflammatory cells infiltration, the MyD88/NF-κB and MAPK pathways and inflammatory cytokines production. RESULTS: The different combinations of bioactive ingredients from LGS significantly protected zebrafish from LPS-induced inflammation, as evidenced by decreased recruitment of macrophages and neutrophils, inhibition of the MyD88/NF-κB and MAPK pathways and down-regulation of TNF-α and IL-6. Among them, the combination group 8 most significantly protected against LPS. The combination of group 8 is: 0.1 µM of emodin, 2 µM of baicalin, 20 µM of phillyrin and 12.5 µM of liquiritin. CONCLUSION: The optimized combination group 8 exerts the most significant anti-inflammatory activity by inhibiting the recruitment of inflammatory cells, activation of the MyD88/NF-κB and MAPK pathways and the secretion of pro-inflammatory cytokines. This present study provides pharmacological evidences for the further development of new modern Chinese drug from LGS to treat acute inflammatory diseases, but indicated the use of zebrafish in the screening of components from formulas.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Emodin/pharmacology , Emodin/therapeutic use , Flavanones/pharmacology , Flavanones/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Inflammation/chemically induced , Interleukin-6/genetics , Larva/cytology , Larva/drug effects , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Medicine, Chinese Traditional , Myeloid Differentiation Factor 88/antagonists & inhibitors , NF-kappa B/metabolism , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Tumor Necrosis Factor-alpha/genetics , Yolk Sac/cytology , Yolk Sac/drug effects , Yolk Sac/immunology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors
13.
J Comp Neurol ; 529(2): 340-366, 2021 02.
Article in English | MEDLINE | ID: mdl-32415669

ABSTRACT

Vascular structures in the developing brain are thought to form via angiogenesis from preformed blood vessels in the cephalic mesenchyme. Immunohistochemical studies of developing mouse brain from E10.5 to E13.5 revealed the presence of avascular blood islands of primitive erythroid cells expressing hemangioblast markers (Flk1, Tal1/Scl1, platelet endothelial cell adhesion molecule 1, vascular endothelial-cadherin, and CD34) and an endothelial marker recognized by Griffonia simplicifolia isolectin B4 (IB4) in the cephalic mesenchyme. These cells formed a perineural vascular plexus from which angiogenic sprouts originated and penetrated the neuroepithelium. In addition, avascular isolated cells expressing primitive erythroid, hemangioblast and endothelial makers were visible in the neuroepithelium where they generated vasculogenic and hemogenic foci. From E10.5 to E13.5, these vasculogenic foci were a source of new blood vessel formation in the developing brain. In vitro, cultured E13.5 brain endothelial cells contained hemogenic endothelial cells capable of generating erythroid cells. Similar cells were present in primary cultures of dissociated cells from E10.5 embryonic head. Our results provide new evidence that the brain vasculature, like that of the yolk sac and the eye choriocapillaris and hyaloid vascular systems, develops at least in part via hemovasculogenesis, a process in which vasculogenesis and hematopoiesis occur simultaneously.


Subject(s)
Brain/blood supply , Brain/embryology , Endothelium, Vascular/embryology , Animals , Brain/cytology , Endothelium, Vascular/cytology , Female , Mice , Morphogenesis/physiology , Pregnancy , Yolk Sac/blood supply , Yolk Sac/cytology , Yolk Sac/embryology
14.
Cell Mol Life Sci ; 78(2): 573-580, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32803399

ABSTRACT

Epidermal resident γδ T cells, or dendritic epidermal T cells (DETCs) in mice, are a unique and conserved population of γδ T cells enriched in the epidermis, where they serve as the regulators of immune responses and sense skin injury. Despite the great advances in the understanding of the development, homeostasis, and function of DETCs in the past decades, the origin and the underlying molecular mechanisms remain elusive. Here, we reviewed the recent research progress on DETCs, including their origin and homeostasis in the skin, especially at transcriptional and epigenetic levels, and discuss the involvement of DETCs in skin diseases.


Subject(s)
Epidermis/immunology , Intraepithelial Lymphocytes/immunology , Skin Diseases/immunology , Skin/immunology , Animals , Cell Differentiation , Disease Models, Animal , Epidermis/metabolism , Epigenesis, Genetic , Humans , Intraepithelial Lymphocytes/cytology , Intraepithelial Lymphocytes/metabolism , Mice , Skin/cytology , Skin/metabolism , Skin Diseases/genetics , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Yolk Sac/cytology , Yolk Sac/immunology , Yolk Sac/metabolism
15.
Int J Mol Sci ; 21(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302450

ABSTRACT

Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.


Subject(s)
Embryonic Development , Erythropoiesis , Fetal Blood/cytology , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Liver/cytology , Liver/embryology , Yolk Sac/cytology
16.
Int. j. morphol ; 38(5): 1412-1420, oct. 2020. graf
Article in English | LILACS | ID: biblio-1134457

ABSTRACT

SUMMARY: Mesenchymal stem cells are characterized by in vitro high proliferation and multilineage potential maintenance. This study aimed to isolate and characterize equine YS mesenchymal stem cells and compare these with amniotic membranes. The yolk sac (YS) and amniotic membranes (AM) were obtained from 20 pregnant mares with gestational age around 30 days. Cells were cultured in α-MEM supplemented with 15 % FBS, 1 % antibiotic solution, 1 % L-glutamine and 1 % nonessential amino acids. To cell characterization we used cytogenetic analysis, fibroblast colony-forming unit assays, cell growth curves, immunophenotyping, flow cytometry, differentiation assays and teratoma formation. Results: Both cell sources presented fibroblastoid and epithelioid-like format. The YS cells have lower colony formation potential then AM ones, 3 versus 8 colonies per 103 plated cells. However, YS cells grew progressively while AM cells showed steady. Both, the YS and amnion cells immunolabeled for Oct-4, Nanog, SSEA-3, cytokeratin 18, PCNA, and vimentin. In addition, presented mesenchymal, hematopoietic, endothelial and pluripotency markers in flow cytometry. Discussion: Both cell sources presented high plasticity and differed into osteogenic, adipogenic, and chondrogenic lineages, and no tumor formation in nude mice was observed. The results suggest that horse YS may be useful for cell therapy such as amnion-derived cells.


RESUMEN: Las células madre mesenquimales se caracterizan por una alta proliferación in vitro y un mantenimiento potencial de múltiples líneas. Este estudio tuvo como objetivo aislar y caracterizar las células madre mesenquimales del saco vitelino equinas y compararlas con las membranas amnióticas. Se obtuvo el saco vitelino (SV) y las membranas amnióticas (MA) de 20 yeguas preñadas con edad gestacional de aproximadamente 30 días. Las células se cultivaron en α -MEM suplementado con 15 % de FBS, 1 % de solución antibiótica, 1 % de L-glutamina y 1 % de aminoácidos no esenciales. Para la caracterización celular utilizamos análisis citogenéticos, ensayos de unidades de colonias de fibroblastos, curvas de crecimiento celular, inmunofenotipaje, citometría de flujo, ensayos de diferenciación y formación de teratomas. Ambas fuentes celulares presentaron formato fibroblastoideo y epitelioide. Las células SV tienen un potencial de formación de colonias más bajo que las de MA, 3 versus 8 colonias por 103 células en placa. Sin embargo, las células SV crecieron progresivamente mientras que las células MA se mostraron estables. Tanto las células YS como las células amnios están inmunomarcadas para Oct-4, Nanog, SSEA-3, citoqueratina 18, PCNA y vimentina. Además, presentó marcadores mesenquimales, hematopoyéticos, endoteliales y pluripotenciales en citometría de flujo. Ambas fuentes celulares presentaron alta plasticidad y diferían en linajes osteogénicos, adipogénicos y condrogénicos, y no se observó formación de tumores en ratones. Los resultados sugieren que el SV de caballo puede ser útil para la terapia celular, como las células derivadas de amnios.


Subject(s)
Animals , Yolk Sac/cytology , Mesenchymal Stem Cells/cytology , Horses , Yolk Sac/embryology , In Vitro Techniques , Cells, Cultured , Immunophenotyping , Regenerative Medicine , Embryonic Development , Flow Cytometry , Amnion
17.
Nature ; 587(7834): 443-447, 2020 11.
Article in English | MEDLINE | ID: mdl-32968278

ABSTRACT

Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac1. Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human2-5 and cow6. Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.


Subject(s)
Biological Evolution , Ectoderm/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Transcription, Genetic , Trophoblasts/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Cattle , Cell Lineage , Cell Polarity , Ectoderm/cytology , Embryo, Mammalian/enzymology , Female , GATA3 Transcription Factor/metabolism , Hippo Signaling Pathway , Humans , Mice , Morula/cytology , Morula/enzymology , Morula/metabolism , Placenta/cytology , Placenta/metabolism , Pregnancy , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , SOXB1 Transcription Factors/metabolism , Signal Transduction , Transcription Factors/metabolism , Trophoblasts/cytology , YAP-Signaling Proteins , Yolk Sac/cytology , Yolk Sac/metabolism
18.
Exp Hematol ; 89: 37-42, 2020 09.
Article in English | MEDLINE | ID: mdl-32735907

ABSTRACT

The extra-embryonic hypoblast/visceral endoderm of Placentalia carries out a variety of functions during gestation, including hematopoietic induction. Results of decades-old and recent experiments have provided compelling evidence that, in addition to its inducing properties, hypoblast/visceral endoderm itself is a source of placental blood cells. Those observations that highlight extra-embryonic endoderm's role as an overlooked source of placental blood cells across species are briefly discussed here, with suggestions for future exploration.


Subject(s)
Allantois/cytology , Blood Cells/cytology , Endoderm/cytology , Erythroblasts/cytology , Placenta/cytology , Yolk Sac/cytology , Allantois/growth & development , Allantois/metabolism , Animals , Blood Cells/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Endoderm/growth & development , Endoderm/metabolism , Erythroblasts/metabolism , Female , Fetal Proteins/genetics , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Placenta/metabolism , Pregnancy , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Yolk Sac/growth & development , Yolk Sac/metabolism
19.
Nature ; 582(7813): 571-576, 2020 06.
Article in English | MEDLINE | ID: mdl-32499656

ABSTRACT

Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs)1. However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45+ haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45+CD34+CD44+ yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs.


Subject(s)
Macrophages/cytology , Single-Cell Analysis , Cell Lineage , Embryo, Mammalian/cytology , Head , Hematopoiesis , Humans , Leukocyte Common Antigens/metabolism , Liver/cytology , Liver/embryology , Lung/cytology , Macrophages/metabolism , Microglia/cytology , Myeloid Progenitor Cells/cytology , RNA-Seq , Skin/cytology , Spatio-Temporal Analysis , Transcriptome , Yolk Sac/cytology
20.
Elife ; 92020 04 17.
Article in English | MEDLINE | ID: mdl-32301704

ABSTRACT

Renal macrophages represent a highly heterogeneous and specialized population of myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells (HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage populations in disease. However, little is known about how these populations change over time in normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis studies, we found that yolk-sac-derived macrophages progressively expand in number with age and become a major contributor to the renal macrophage population in older mice. This chronological shift in macrophage composition involves local cellular proliferation and recruitment from circulating progenitors and may contribute to the distinct immune responses, limited reparative capacity, and increased disease susceptibility of kidneys in the elderly population.


Older people are more likely to develop kidney disease, which increases their risk of having other conditions such as a heart attack or stroke and, in some cases, can lead to their death. Older kidneys are less able to repair themselves after an injury, which may help explain why aging contributes to kidney disease. Another possibility is that older kidneys are more susceptible to excessive inflammation. Learning more about the processes that lead to kidney inflammation in older people might lead to better ways to prevent or treat their kidney disease. Immune cells called macrophages help protect the body from injury and disease. They do this by triggering inflammation, which aides healing. Too much inflammation can be harmful though, making macrophages a prime suspect in age-related kidney harm. Studying these immune cells in the kidney and how they change over the lifespan could help scientists to better understand age-related kidney disease. Now, Ide, Yahara et al. show that one type of macrophage is better at multiplying in older kidneys. In the experiments, mice were genetically engineered to make a fluorescent red protein in one kind of macrophage. This allowed Ide, Yahara et al. to track these immune cells as the mice aged. The experiments showed that this subgroup of cells is first produced when the mice are embryos. They stay in the mouse kidneys into adulthood, and are so prolific that, over time, they eventually become the most common macrophage in older kidneys. The fact that one type of embryonically derived macrophage takes over with age may explain the increased inflammation and reduced repair capacity seen in aging kidneys. More studies will help scientists to understand how these particular cells contribute to age-related changes in susceptibility to kidney disease.


Subject(s)
Aging/immunology , Kidney/immunology , Macrophages/physiology , Yolk Sac/cytology , Animals , CX3C Chemokine Receptor 1/analysis , Mice , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...