Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Commun ; 10(3): 425-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25924520

ABSTRACT

We aimed to identify the main compounds responsible for low temperature-induced yellow pigmentation of the bracts of Zantedeschia aethiopica 'Wedding March'. On the basis of the area ratios estimated from absorbance at 400 nm in HPLC analyses, we identified two flavonoids, isoorientin and swertiajaponin, as such compounds. We also identified two additional flavonoids, isovitexin and swertisin, which do not contribute considerably to the yellow pigmentation. Flavonoids of Zantedeschia bracts seem to belong to the class of flavone C-glycosides.


Subject(s)
Cold Temperature , Flavones/chemistry , Flowers/physiology , Glucosides/chemistry , Pigments, Biological/chemistry , Zantedeschia/physiology , Flowers/chemistry , Molecular Structure , Zantedeschia/chemistry
2.
Physiol Plant ; 154(1): 128-41, 2015 May.
Article in English | MEDLINE | ID: mdl-25243478

ABSTRACT

The mature pigmented spathe of Zantedeschia is characterized by a developmental process, wherein the spathe regreens after anthesis and prior to senescence of the inflorescence. Previous research has shown that spathe regreening involves redifferentiation of chloroplasts and re-accumulation of chlorophyll, but the detailed physiological changes associated with regreening are still largely unknown. Using Zantedeschia aethiopica and the Zantedeschia pentlandii variety 'Best Gold' as models, this study explores the physiological mechanism and possible roles of fructification, 6-benzylaminopurine (BAP) and gibberellin (GA3 ) in induction or progression of spathe regreening. Application of BAP stimulated regreening in spathe tissue of 'Best Gold' by enhancing accumulation of carotenoid and chlorophyll, and also increasing stacking of grana. In contrast, GA3 retarded formation of double-membrane lamella during chloroplast redifferentiation, thus delaying the onset of regreening. We suggest that these actions of BAP and GA3 have a synergistic effect in delaying the onset of regreening in 'Best Gold' so that when applied together retardation of chlorophyll accumulation, chloroplast redifferentiation and accumulation of carotenoids were enhanced. The elimination of fructification did not prevent the occurrence of regreening in either Zantedeschia model plants, indicating that fructification was not a prerequisite for the induction of regreening. It is still unclear how regreening in Zantedeschia is triggered. We propose that the onset of regreening in Zantedeschia is likely to be a genetically programmed event.


Subject(s)
Carotenoids/metabolism , Chlorophyll/metabolism , Flowering Tops/physiology , Zantedeschia/physiology , Benzyl Compounds , Flowering Tops/ultrastructure , Gibberellins , Kinetin , Purines , Zantedeschia/ultrastructure
3.
Planta ; 232(2): 523-31, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20490542

ABSTRACT

A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.


Subject(s)
Cell Respiration/physiology , Electron Transport/physiology , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Zantedeschia/metabolism , Zantedeschia/physiology , Carbon Dioxide/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...