Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Plant Genome ; 17(1): e20422, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129947

ABSTRACT

Terpenoids are the main active components in the Zanthoxylum armatum leaves, which have extensive medicinal value. The Z. armatum leaf is the main by-product in the Z. armatum industry. However, the transcription factors involved in the biosynthesis of terpenoids are rarely reported. This study was performed to identify and classify the APETALA2/ethylene-responsive factor (AP2/ERF) gene family of Z. armatum. The chromosome distribution, gene structure, conserved motifs, and cis-acting elements of the promoter of the species were also comprehensively analyzed. A total of 214 ZaAP2/ERFs were identified. From the obtained transcriptome and terpenoid content data, four candidate ZaAP2/ERFs involved in the biosynthesis of terpenoids were selected via correlation and weighted gene co-expression network analysis. A phylogenetic tree was constructed using 13 AP2/ERFs related to the biosynthesis of terpenoids in other plants. ZaERF063 and ZaERF166 showed close evolutionary relationships with the ERFs in other plant species and shared a high AP2-domain sequence similarity with the two closest AP2/ERF proteins, namelySmERF8 from Salvia miltiorrhiza and AaERF4 from Artemisia annua. Further investigation into the effects of methyl jasmonate (MeJA) treatment on the content of terpenoids in Z. armatum leaves revealed that MeJA significantly induced the upregulation of ZaERF166 and led to a significant increase in the terpenoids content in Z. armatum leaves, indicating that ZaERF166 might be involved in the accumulation of terpenoids of Z. armatum. Results will be beneficial for the functional characterization of AP2/ERFs in Z. armatum and establishment of the theoretical foundation to increase the production of terpenoids via the manipulation of the regulatory elements and strengthen the development and utilization of Z. armatum leaves.


Subject(s)
Transcription Factors , Zanthoxylum , Transcription Factors/genetics , Transcription Factors/metabolism , Terpenes , Zanthoxylum/genetics , Zanthoxylum/metabolism , Phylogeny , Ethylenes , Genomics
2.
Sci Rep ; 13(1): 20767, 2023 11 26.
Article in English | MEDLINE | ID: mdl-38008750

ABSTRACT

Zanthoxylum nitidum (Roxb.) is a commonly used traditional Chinese medicine. However, the collection and protection of wild germplasm resources of Z. nitidum are still insufficient, and there is limited research on its genetic diversity and fingerprint. In the present study, 15 simple sequence repeat (SSR) markers were developed by genotyping based on multiplexed shotgun sequencing. The genetic diversity of 51 populations (142 individuals) of Z. nitidum was evaluated using these 15 SSRs. A total of 245 alleles (Na) were detected, with an average value of 16.333, and the average polymorphism information content was 0.756. The genetic distance among 51 populations was 0.164~1.000, with an average of 0.659. Analysis of molecular variance showed low genetic differentiation (40%) and high genetic differentiation (60%) between populations and individuals, respectively. The genetic differentiation coefficient (Fst) of the population was 0.338, indicating that 66.2% of the genetic variation occurred within the population, and the gene flow (Nm) was 0.636, demonstrating that the gene exchange between populations was low. Clustering analysis revealed that the genetic similarity coefficient was 0.30, dividing the 51 populations into 4 groups of 2, 17, 3, and 29 populations. There was no specific relationship between geographical location differences and genetic distance. The genetic diversity level of Z. nitidum is relatively high, and our results provide a theoretical basis for the rapid identification of Z. nitidum germplasm resources and variety selection.


Subject(s)
Zanthoxylum , Humans , Zanthoxylum/genetics , Polymorphism, Genetic , Biomarkers , Microsatellite Repeats/genetics , Alleles , Genetic Variation
3.
Physiol Plant ; 175(5): e14031, 2023.
Article in English | MEDLINE | ID: mdl-37882301

ABSTRACT

Zanthoxylum bungeanum is an important condiment with high economic value and its peel color is one of the main quality indexes. However, the key pigment compounds and related genes are still unclear affecting the quality control of the plants. In this study, the contents of four types of pigments were measured in Z. bungeanum and flavonoids were identified as the most important pigments. Based on the targeted flavonoid metabolomics of Z. bungeanum peels, 14 key pigment compounds were screened out from 152 flavonoids, among which cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside were the most critical compounds for peel color. They were further verified to be present in nine varieties of Z. bungeanum by HPLC fingerprints. The 14 compounds were all associated with flavonoid and anthocyanin biosynthesis pathways and the 39 differentially expressed genes related to these pathways were annotated and screened based on transcriptomics. The genes ZbDFR, ZbANS, and ZbUFGT were identified as three key genes for anthocyanin synthesis in Z. bungeanum peels. Further qRT-PCR results confirmed the reliability of transcriptomics and the accuracy of gene screening. Subsequent protein induced expression demonstrated that ZbANS and ZbUFGT were expressed after 12 h induced by IPTG while ZbDFR was expressed after 15 h. Further transient and stable transformation analysis confirmed that both anthocyanin content and the expression of ZbDFR were significantly increased in overexpression Z. bungeanum leaves and Nicotiana benthamiana. The functional effect of stable transformation of ZbDFR was more significant than that of transient transformation with a 7.67-fold/1.49-fold difference in total anthocyanin content and a 42.37-fold/12.32-fold difference in the expression of ZbDFR. This study provides new insights into the chemical composition and the molecular mechanisms of Z. bungeanum peel color and lays an effective foundation for the color quality control, multi-purpose utilization of Z. bungeanum and the creation of new germplasm.


Subject(s)
Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/chemistry , Transcriptome/genetics , Anthocyanins , Reproducibility of Results , Flavonoids
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834210

ABSTRACT

Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.


Subject(s)
Transcriptome , Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/metabolism , Plant Breeding , Metabolome , Flavonoids/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
5.
Plant Physiol Biochem ; 202: 107969, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37597276

ABSTRACT

Tana (Zanthoxylum ailanthoides), a perennial deciduous species in the Rutaceae family, possesses leaves with a unique fragrance that indigenous peoples incorporate into their traditional cuisine. In Kalibuan, the cultivated tana trees were pruned repeatedly to maintain a shorter height, which led to the growth of new leaves that were spicier and pricklier. Tana leaves contain a range of volatile terpenoids, and the pungent aroma may arise from the presence of monoterpenoids. To gain insight into the biosynthetic pathway, five candidate monoterpene synthase genes were cloned and characterized using a purified recombinant protein assay. The main product of Za_mTPS1, Za_mTPS2, and Za_mTPS5 is sabinene, geraniol, and (E)-ß-ocimene, respectively. The main product of Za_mTPS3 and Za_mTPS4 is linalool. Real-time PCR analysis revealed that Za_mTPS1 and Za_mTPS5 are expressed at higher levels in prickly leaves of cultivated tana, suggesting that they may contribute to the distinctive aroma of this plant.


Subject(s)
Apiaceae , Intramolecular Lyases , Zanthoxylum , Zanthoxylum/genetics , Monoterpenes
6.
Genes (Basel) ; 14(7)2023 07 17.
Article in English | MEDLINE | ID: mdl-37510363

ABSTRACT

Green prickly ash (Zanthoxylum armatum) has edible and medicinal value and is an economically significant plant in many countries. Z. armatum has many cultivars and varieties with similar phenotypes that are difficult to distinguish via traditional methods. In this study, we utilized oligo-FISH to distinguish five varieties and cultivars of Z. armatum on the basis of three oligonucleotide probes of 5S rDNA, (AG3T3)3, and (GAA)6. Karyotype analysis of the five varieties and cultivars of Z. armatum showed that the Z. armatum 'Tengjiao' karyotype formula was 2n = 2x = 98m with karyotype type 1C and an arm ratio of 4.3237, including two pairs of 5S rDNA signals and five pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'Youkangtengjiao' was 2n = 2x = 128m + 8sm with karyotype type 2B and an arm ratio of 3.5336, including three pairs of 5S rDNA signals and 17 pairs of (GAA)6 signals. The karyotype formula of Z. armatum var. novemfolius was 2n = 2x = 134m + 2sm with karyotype type 1C and an arm ratio of 5.5224, including two pairs of 5S rDNA signals and eight pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-03' was 2n = 2x = 2M + 128m + 4sm + 2st with karyotype type 2C and an arm ratio of 4.1829, including three pairs of 5S rDNA signals and nine pairs of (GAA)6 signals. The karyotype formula of Z. armatum 'YT-06' was 2n = 2x = 126m + 10sm with cytotype 2B and an arm ratio of 3.3011, including three pairs of 5S rDNA signals and two pairs of (GAA)6 signals. The five varieties and cultivars of Z. armatum had (AG3T3)3 signals on all chromosomes. The chromosomal symmetry of Z. armatum 'Tengjiao' was high, whereas the chromosomal symmetry of Z. armatum 'YT-03' was low, with the karyotypes of the five materials showing a trend toward polyploid evolution. The phylogenetic relationship between Z. armatum 'Tengjiao' and Z. armatum var. novemfolius was the closest, while that between Z. armatum 'YT-03' and Z. armatum 'YT-06' was closer than with Z. armatum 'Youkangtengjiao' according to oligo-FISH. The results provided a karyotype profile and a physical map that contributes to the distinction of varieties and cultivars of Z. armatum and provides strategies for distinguishing other cultivated species.


Subject(s)
Zanthoxylum , Phylogeny , Zanthoxylum/genetics , Karyotype , Karyotyping , DNA, Ribosomal/genetics
7.
Plant Physiol Biochem ; 201: 107813, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290134

ABSTRACT

Zanthoxylum armatum is a dioecious prickly plant which developed apomictic reproduction. The increases in male flowers and prickle density in female plants lead to low yield and picking efficiency. However, little is known concerning the mechanisms of floral development and prickle formation. NAC is a well-known transcription factor that participates in multiple aspects of plant growth and development. Herein, we characterize the functions and regulatory mechanisms of candidate NACs controlling both traits in Z. armatum. A total of 159 ZaNACs were identified, and 16 of these were male-biased, represented by the NAP subfamily members ZaNAC93 and ZaNAC34, orthologs of AtNAC025 and AtNARS1/NAC2 respectively. Overexpression of ZaNAC93 in tomato led to modifications in flower and fruit development, including earlier flowering, increased numbers of lateral shoots and flowers, accelerated plant senescence, and reduced size and weight of fruits and seeds. In addition, the trichome density in leaves and inflorescences was dramatically reduced in ZaNAC93-OX lines. Overexpression of ZaNAC93 resulted in the up-/downregulation of genes associated with GA, ABA and JA signaling pathways, such as GAI, PYL and JAZ, as well as several TFs, including bZIP2, AGL11, FBP24 and MYB52. Yeast two-hybrid analysis revealed that ZaNAC93 protein could interact with AP1, GAI, bZIP2 and AGL11 in Z. armatum, which might contribute to floral induction, fruit growth, and trichome initiation. This work provides new insights into the molecular mechanisms of ZaNAC93 in reproductive development and prickle formation in Z. armatum.


Subject(s)
Fruit , Zanthoxylum , Fruit/genetics , Plant Extracts/pharmacology , Zanthoxylum/genetics , Transcription Factors/genetics , Reproduction
8.
PeerJ ; 11: e15321, 2023.
Article in English | MEDLINE | ID: mdl-37163151

ABSTRACT

Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a type of Chinese Dao-di herb, also called Liangmianzhen, which is widely used to treat arthralgia, rheumatic arthralgia, and stomach pain. However, genomic resources for Z. nitidum are still scarce. This study provides transcriptomic resources for Z. nitidum by applying single-molecule real-time (SMRT) sequencing technology. In total, 456,109 circular consensus sequencing (CCS) reads were generated with a mean length of 2,216 bp from Z. nitidum roots, old stems, young branches, leaves, flowers, and fruits. Of these total reads, 353,932 were full-length nonchimeric (FLNC) reads with an average length of 1,996 bp. A total of 16,163 transcripts with a mean length of 1,171 bp were acquired. Of these transcripts, 14,231 (88%) were successfully annotated using public databases. Across all the 16,163 transcripts, we identified 6,255 long non-coding RNAs (lncRNAs) and 22,780 simple sequence repeats (SSRs). Furthermore, 3,482 transcription factors were identified. Among the SSR loci, 1-3 nucleotide repeats were dominant, occupying 99.36% of the total SSR loci, with mono-, di-, and tri-nucleotide repeats accounting for 61.80%, 19.89%, and 5.02% of the total SSR loci, respectively. A total of 36 out of 100 randomly selected primer pairs were verified to be positive, 20 of which showed polymorphism. These findings enrich the genetic resources available for facilitating future studies and research on relevant topics such as population genetics in Z. nitidum.


Subject(s)
Zanthoxylum , Zanthoxylum/genetics , Gene Expression Profiling , Transcriptome/genetics , Polymorphism, Genetic , Nucleotides
9.
Gene ; 871: 147434, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37068692

ABSTRACT

Zanthoxylum armatum is an evergreen plant with high economical and medicinal values. The presence of prickles on stems and leaves is undesirable for them make picking difficult. To date, little is known of prickle formation in Z. armatum. Herein, the morphological and molecular features of prickle initiation in prickless (WC) and three types of prickly Z. armatum were characterized. Compared to WC, the levels of cytokinin and auxin were increased, while GA and JA declined in prickly Z. armatum. Transcriptome analysis identified 6258 differentially expressed genes (DEGs) between prickless and prickly Z. armatum. Among them, several DEGs related to hormone metabolism and signaling, including LOG7, CKX3, AHK1, three DELLAs, six JAZs and TIR1, were candidate genes involved in prickle formation. Transcription factors associated with prickle formation were screened, including MYB6-1/MYB6-2, WER, GL3-2, SPL4/5, SOC1, and SCL32. Of them, MYB6-1 and WER might negatively regulate prickles initiation via interacting with GL3-2. Additionally, the histone acetylation and DNA methylation levels, the transcripts of histone acetyltransferase/deacetylase and DNA methyltransferases showed significant differences between prickless and prickly plants, indicating their involvements in prickle initiation. These findings illustrate the regulation of prickle formation might be mediated by phytohormones (especially cytokinin), transcription factors and epigenetic modifications in Z. armatum.


Subject(s)
Plant Extracts , Zanthoxylum , Zanthoxylum/genetics , Epigenesis, Genetic , Gene Expression Profiling , Hormones
10.
Plant Genome ; 16(1): e20295, 2023 03.
Article in English | MEDLINE | ID: mdl-36606521

ABSTRACT

Zanthoxylum armatum is an important cash crop for medicinal and food purposes in Asia. However, its stems and leaves are covered with a large number of prickles, which cause many problems in the production process. The homeodomain leucine zipper (HD-ZIP) gene family is a class of transcription factors unique to plants that play an important role in biological processes such as morphogenesis, signal transduction, and secondary metabolite synthesis. However, little is known about HD-ZIP gene information that may be involved in prickle development of Z. armatum. Here, we identified 76 ZaHDZ genes from the Z. armatum genome and classified them into four subfamilies (I-IV) based on phylogenetic analysis, a classification further supported by gene structure and conserved motif analysis. Seventy-six ZaHDZ genes were unevenly distributed on chromosomes. Evolutionary analysis revealed that the expansion of ZaHDZ genes mainly were due to whole-genome duplication (WGD) or segmental duplication, and they experienced strong purifying selection pressure in the process of evolution. A total of 47 cis-elements were identified in the promoter region of ZaHDZ genes. Quantitative real-time polymerase chain reaction analysis was performed on subfamily IV ZaHDZ gene expression levels in five tissues and under four hormone treatments. Finally, ZaHDZ16 was predicted to be the candidate gene most likely to be involved in prickle development of Z. armatum. These results contribute to a better understanding of the characteristics of HD-ZIP gene family and lay a foundation for further study on the function of genes related to prickle development of Z. armatum.


Subject(s)
Zanthoxylum , Zanthoxylum/genetics , Zanthoxylum/metabolism , Genome, Plant , Phylogeny , Transcription Factors/genetics , Leucine Zippers/genetics
11.
BMC Plant Biol ; 23(1): 7, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36600201

ABSTRACT

BACKGROUND: Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. RESULTS: Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. CONCLUSIONS: We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.


Subject(s)
Thermotolerance , Zanthoxylum , Zygophyllum , Thermotolerance/genetics , Sodium/metabolism , Zygophyllum/genetics , Zygophyllum/metabolism , Zanthoxylum/genetics , Transcriptome , Gene Expression Profiling , Heat-Shock Response/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hot Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
12.
Tree Physiol ; 43(1): 169-184, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36054375

ABSTRACT

Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.


Subject(s)
Quercetin , Zanthoxylum , Quercetin/metabolism , Anthocyanins/metabolism , Zanthoxylum/genetics , Zanthoxylum/metabolism , Flavonoids/metabolism , Flavonols , Oxidoreductases , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism
13.
Plant Biotechnol J ; 21(1): 78-96, 2023 01.
Article in English | MEDLINE | ID: mdl-36117410

ABSTRACT

Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.


Subject(s)
Zanthoxylum , Genomics , Zanthoxylum/genetics , Zanthoxylum/metabolism , Genome, Plant , Evolution, Molecular
14.
BMC Genomics ; 23(1): 652, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104767

ABSTRACT

BACKGROUND: Multiprotein bridging factor 1 (MBF1) is a crucial transcriptional coactivator in animals, plants, and some microorganisms, that plays a necessary role in growth development and stress tolerance. Zanthoxylum armatum is an important perennial plant for the condiments and pharmaceutical industries, whereas the potential information in the genes related to stress resistance remains poorly understood in Z. armatum.  RESULTS: Herein, six representative species were selected for use in a genome-wide investigation of the MBF1 family, including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Citrus sinensis, Ginkgo biloba, and Z. armatum. The results showed that the MBF1 genes could be divided into two groups: Group I contained the MBF1a and MBF1b subfamilies, and group II was independent of the MBF1c subfamily.. Most species have at least two different MBF1 genes, and MBF1c is usually an essential member. The three ZaMBF1 genes were respectively located on ZaChr26, ZaChr32, and ZaChr4 of Zanthoxylum chromosomes. The collinearity were occurred between three ZaMBF1 genes, and ZaMBF1c showed the collinearity between Z. armatum and both P. trichocarpa and C. sinensis. Moreover, many cis-elements associated with abiotic stress and phytohormone pathways were detected in the promoter regions of MBF1 of six representative species. The ERF binding sites were the most abundant targets in the sequences of the ZaMBF1 family, and some transcription factor sites related to floral differentiation were also identified in ZaMBF1c, such as MADS, LFY, Dof, and AP2. ZaMBF1a was observed to be very highly expressed in 25 different samples except in the seeds, and ZaMBF1c may be associated with the male and female floral initiation processes. In addition, expression in all the ZaMBF1 genes could be significantly induced by water-logging, cold stress, ethephon, methyl jasmonate, and salicylic acid treatments, especially in ZaMBF1c. CONCLUSION: The present study carried out a comprehensive bioinformatic investigation related to the MBF1 family in six representative species, and the responsiveness of ZaMBF1 genes to various abiotic stresses and phytohormone inductions was also revealed. This work not only lays a solid foundation to uncover the biological roles of the ZaMBF1 family in Z. armatum, but also provides some broad references for conducting the MBF1 research in other plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Zanthoxylum , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zanthoxylum/genetics , Zanthoxylum/metabolism
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012309

ABSTRACT

Growth-regulating factors (GRFs) are plant-specific transcription factors that play an important role in plant growth and development. In this study, fifteen GRF gene members containing QLQ and WRC domains were identified in Zanthoxylum armatum. Phylogenetic and collinearity analysis showed that ZaGRFs were closely related to CsGRFs and AtGRFs, and distantly related to OsGRFs. There are a large number of cis-acting elements related to hormone response and stress induction in the GRF gene promoter region of Z. armatum. Tissue-specific expression analysis showed that except for ZaGRF7, all the ZaGRFs were highly expressed in young parts with active growth and development, including terminal buds, seeds, and young flowers, suggesting their key roles in Z. armatum growth and development. Eight ZaGRFs were selected to investigate the transcriptional response to auxin, gibberellin and drought treatments. A total of six ZaGRFs in the NAA treatment, four ZaGRFs in the GA3 treatment, and six ZaGRFs in the PEG treatment were induced and significantly up-regulated. Overexpression of ZaGRF6 increased branching and chlorophyll content and delayed senescence of transgenic Nicotiana benthamiana. ZaGRF6 increased the expression of CRF2 and suppressed the expression of ARR4 and CKX1, indicating that ZaGRF6 is involved in cytokinin metabolism and signal transduction. These research results lay a foundation for further analysis of the GRF gene function of Z. armatum and provide candidate genes for growth, development, and stress resistance breeding of Z. armatum.


Subject(s)
Zanthoxylum , Longevity , Phylogeny , Plant Breeding , Plant Extracts/pharmacology , Plant Leaves , Zanthoxylum/genetics
16.
Mol Biotechnol ; 64(12): 1454-1467, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35763198

ABSTRACT

Zanthoxylum armatum DC. is a plant with many medicinal values which is extensively used in traditional system of medicine for curing various diseases and ailments, including cancer. The aim of the present study is to identify Zanthoxylum armatum collected from different parts of Manipur, India, at molecular level. Molecular markers like internal transcribed spacer (ITS) region and other DNA barcoding genes such as matK, rbcL, psbA-trnH and trnL-trnF were targeted to find out the most suitable DNA barcode for identifying this species. Sequences obtained using the five primer pairs-ITS An5 and ITS An4, matK-413f-1 and matK-1227r-1, rbcL-1F and rbcL-724R, psbA-F and trnH-R and trnL-F and trnF-R were submitted to GenBank, NCBI. Amongst the five DNA barcoding targets, one nuclear and four chloroplast genes were successfully amplified by PCR (100%) and sequencing (100%) in all the eight plant samples. Sequence similarity of total ITS region (620 bp) when compared to the reference sequence were found to be between 98.55 and 99.68%. In our study, ITS sequence in combination with DNA barcoding sequences of rbcL, trnH-psbA and trnL-trnF was very successful in identification of Z. armatum and differentiate other species clearly in the phylogeny analysis. Our work shows ITS region to be the most suitable DNA barcode which formed a monophyletic group of the species in the phylogenetic tree analysis. The sequences of the barcoding genes of Z. armatum DC. obtained from this study adds to the already available resources which will be helpful in the future research endeavours.


Subject(s)
DNA Barcoding, Taxonomic , Zanthoxylum , DNA, Plant/genetics , DNA, Ribosomal , DNA, Ribosomal Spacer/genetics , India , Phylogeny , Zanthoxylum/genetics
17.
Int J Mol Sci ; 23(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35563160

ABSTRACT

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.


Subject(s)
Droughts , Zanthoxylum , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Zanthoxylum/genetics , Zanthoxylum/metabolism
18.
BMC Plant Biol ; 22(1): 251, 2022 May 21.
Article in English | MEDLINE | ID: mdl-35596133

ABSTRACT

BACKGROUND: Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS: A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS: Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.


Subject(s)
Anthocyanins , Zanthoxylum , Anthocyanins/metabolism , Flavonoids/metabolism , Kaempferols/metabolism , Metabolomics , Plant Breeding , Quercetin/metabolism , Transcriptome , Zanthoxylum/genetics
19.
Genomics ; 114(3): 110374, 2022 05.
Article in English | MEDLINE | ID: mdl-35489616

ABSTRACT

Zanthoxylum armatum DC. is an important economic tree species. Prickle is a type of trichome with special morphology, and there are a lot of prickles on the leaves of Z. armatum, which seriously restricts the development of Z. armatum industry. In this study, the leaves of Z. armatum cv. Zhuye (ZY) and its budding variety 'Rongchangwuci' (WC) (A less prickly mutant variety) at different developmental stages were used as materials, and the transcriptome sequencing data were analyzed. A total of 96,931 differentially expressed genes (DEGs) were identified among the samples, among which 1560 were candidate DEGs that might be involved in hormone metabolism. The contents of JA, auxin and CK phytohormones in ZY leaves were significantly higher than those in WC leaves. Combined with weighted gene co-expression network analysis, eight genes (MYC, IAA, ARF, CRE/AHK, PP2C, ARR-A, AOS and LOX) were identified, including 25 transcripts, which might affect the metabolism of the three hormones and indirectly participate in the formation of prickles. Combining with the proteins successfully reported in other plants to regulate trichome formation, ZaMYB86, a transcription factor of R2R3 MYB family, was identified through local Blast and phylogenetic tree analysis, which might regulate prickle formation of Z. armatum. Overexpression of ZaMYB86 in mutant A. thaliana resulted in the reduction of trichomes in A. thaliana leaves, which further verified that ZaMYB86 was involved in the formation of pickles. Yeast two-hybrid results showed that ZaMYB86 interacted with ZaMYB5. Furthermore, ZaMYB5 was highly homologous to AtMYB5, a transcription factor that regulated trichomes development, in MYB DNA binding domain. Taken together, these results indicated that ZaMYB86 and ZaMYB5 act together to regulate the formation of prickles in Z. armatum. Our findings provided a new perspective for revealing the molecular mechanism of prickly formation.


Subject(s)
Arabidopsis , Zanthoxylum , Transcriptome , Zanthoxylum/genetics , Arabidopsis/genetics , Phylogeny , Transcription Factors/genetics
20.
Sci Rep ; 12(1): 5995, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397670

ABSTRACT

Aflatoxin B1 (AFB1) is a food-borne toxin produced by Aspergillus flavus and a few similar fungi. Natural anti-aflatoxigenic compounds are used as alternatives to chemical fungicides to prevent AFB1 accumulation. We found that a methanolic extract of the food additive Zanthoxylum bungeanum shuts down AFB1 production in A. flavus. A methanol sub-fraction (M20) showed the highest total phenolic/flavonoid content and the most potent antioxidant activity. Mass spectrometry analyses identified four flavonoids in M20: quercetin, epicatechin, kaempferol-3-O-rhamnoside, and hyperoside. The anti-aflatoxigenic potency of M20 (IC50: 2-4 µg/mL) was significantly higher than its anti-proliferation potency (IC50: 1800-1900 µg/mL). RNA-seq data indicated that M20 triggers significant transcriptional changes in 18 of 56 secondary metabolite pathways in A. flavus, including repression of the AFB1 biosynthesis pathway. Expression of aflR, the specific activator of the AFB1 pathway, was not changed by M20 treatment, suggesting that repression of the pathway is mediated by global regulators. Consistent with this, the Velvet complex, a prominent regulator of secondary metabolism and fungal development, was downregulated. Decreased expression of the conidial development regulators brlA and Medusa, genes that orchestrate redox responses, and GPCR/oxylipin-based signal transduction further suggests a broad cellular response to M20. Z. bungeanum extracts may facilitate the development of safe AFB1 control strategies.


Subject(s)
Aflatoxins , Zanthoxylum , Aflatoxin B1/metabolism , Aspergillus flavus/metabolism , Flavonoids/metabolism , Genes, Regulator , Methanol/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Secondary Metabolism , Zanthoxylum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...