Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.474
Filter
1.
Sci Rep ; 14(1): 12754, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38830936

ABSTRACT

Humans are the only species who generate waste materials that cannot be broken down by natural processes. The ideal solution to this waste problem would be to employ only compostable materials. Biodegradable materials play a key role in creating a safer and greener world. Biodegradability is the gift that keeps on giving, in the sense of creating an Earth worth living. The future is thus best served by green energy, sustainability, and renewable resources. To realize such goals, waste should be considered as a valuable resource. In this context, Zea mays (Zm) root fibres, which are normally considered as agricultural waste, can be used as reinforcing substances in polymer matrices to produce structural composite materials. Before being used in composites, such fibres must be analysed for their physical properties. Chemical treatments can be employed to improve the structural quality of fibres, and the changes due to such modification can be analysed. Therefore, the current work examines the effect of permanganate treatment on the surface properties of Zm fibres. The raw and potassium permanganate-treated samples were assayed for various properties. Physical analysis of the fibre samples yielded details concerning the physical aspects of the fibres. The thermal conductivity and moisture absorption behaviour of the samples were analysed. Chemical analysis was employed to characterize the composition of both treated and untreated samples. p-XRD was employed to examine the crystalline nature of the Zm fibres. Numerous functional groups present in each sample were analysed by FTIR. Thermogravimetric analysis was used to determine the thermal stability of Zm fibres. Elemental analysis (CHNS and EDS) was used to determine the elemental concentrations of both raw and treated samples. The surface alterations of Zm fibres brought on by treatment were described using SEM analysis. The characteristics of Zm roots and the changes in quality due to treatment were reviewed, and there were noticeable effects due to the treatment. Both samples would have applications in various fields, and each could be used as a potential reinforcing material in the production of efficient bio-composites.


Subject(s)
Plant Roots , Potassium Permanganate , Zea mays , Zea mays/chemistry , Zea mays/metabolism , Potassium Permanganate/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Biodegradation, Environmental , Thermal Conductivity
2.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38726730

ABSTRACT

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Subject(s)
Bupleurum , Metabolomics , Oleanolic Acid , Plant Roots , Saponins , Sorghum , Zea mays , Sorghum/metabolism , Sorghum/chemistry , Bupleurum/chemistry , Bupleurum/metabolism , Zea mays/metabolism , Zea mays/chemistry , Saponins/analysis , Saponins/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/analysis , Oleanolic Acid/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Plant Roots/metabolism , Plant Roots/chemistry , Mass Spectrometry/methods , Agriculture/methods , Liquid Chromatography-Mass Spectrometry
3.
Sci Rep ; 14(1): 10426, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714752

ABSTRACT

Discriminating different cultivars of maca powder (MP) and detecting their authenticity after adulteration with potent adulterants such as maize and soy flour is a challenge that has not been studied with non-invasive techniques such as near infrared spectroscopy (NIRS). This study developed models to rapidly classify and predict 0, 10, 20, 30, 40, and 50% w/w of soybean and maize flour in red, black and yellow maca cultivars using a handheld spectrophotometer and chemometrics. Soy and maize adulteration of yellow MP was classified with better accuracy than in red MP, suggesting that red MP may be a more susceptible target for adulteration. Soy flour was discovered to be a more potent adulterant compared to maize flour. Using 18 different pretreatments, MP could be authenticated with R2CV in the range 0.91-0.95, RMSECV 6.81-9.16 g/,100 g and RPD 3.45-4.60. The results show the potential of NIRS for monitoring Maca quality.


Subject(s)
Machine Learning , Powders , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Zea mays/chemistry , Spectrophotometry/methods , Macau , Food Contamination/analysis , Glycine max/chemistry , Flour/analysis
4.
Sci Rep ; 14(1): 11673, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778037

ABSTRACT

Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics examined have a normal or close to normal distribution, and the seed material used in the investigation is representative. Furthermore, the use of artificial neural networks to predict the wet basis moisture content of seeds based on changes in their dimensions has an efficiency of 82%. The results obtained from the method used in this work are very promising for predicting the moisture content.


Subject(s)
Neural Networks, Computer , Seeds , Water , Zea mays , Seeds/chemistry , Water/chemistry , Zea mays/chemistry , Image Processing, Computer-Assisted/methods , Edible Grain/chemistry
5.
PLoS One ; 19(5): e0304328, 2024.
Article in English | MEDLINE | ID: mdl-38787825

ABSTRACT

Nutritive value of five Cenchrus ciliaris (buffel grass) genotypes (IG96-50, IG96-96, IG96-358, IG96-401 and IG96-403) weredetermined. Their sugar contents (>70 mg/g of dry matter) and ensiling potential were evaluated using in vitro batch culture and in vivo studies. Research indicated significant differences (P < 0.05) in the dry matter, organic matter, ether extract, neutral detergent fiber, acid detergent fiber, cellulose and lignin contents of the C. ciliaris genotypes tested. Genotypes also differed (P < 0.05) in total carbohydrates, structural carbohydrates, non-structural carbohydrates and protein fractions. Genotype IG96-96 had the lowest total digestible nutrients, digestible energy and metabolizable energy contents (377.2 g/kg, 6.95 and 5.71 MJ/kg of dry matter, respectively), and net energy values for lactation, maintenance and growth. After 45 days of ensiling, C. ciliaris silages differed (P < 0.05) in dry matter, pH, and lactic acid contents, and their values ranged between 255-339, 4.06-5.17 g/kg of dry matter and 10.8-28.0 g/kg of dry matter, respectively. Maize silage had higher (P < 0.05) Organic Matter (919.5g/kg of dry matter), ether extract (20.4g/kg of dry matter) and hemi-cellulose (272.3 g/kg of dry matter) than IG96-401 and IG96-96 silages. The total carbohydrates and non-structural carbohydrates of maize silage were higher (P < 0.05), while structural carbohydrates were comparable (P < 0.05) with C. ciliaris silages. Sheep on maize silage had (P < 0.05) higher metabolizable energy, lower crude protein, and digestible crude protein intake (g/kg of dry matter) than those on C. ciliaris silage diets. Nitrogen intake and urinary-N excretion were higher (P < 0.05) on genotype IG96-96 silage diet. Overall, this study suggested that certain C. ciliaris genotypes, notably IG96-401 and IG96-96, exhibited nutritive values comparable to maize silage in sheep studies, offering a promising avenue for future exploration as potential alternatives in diversified and sustainable livestock nutrition programs.


Subject(s)
Cenchrus , Genotype , Nutritive Value , Silage , Zea mays , Animals , Silage/analysis , Zea mays/genetics , Zea mays/chemistry , Sheep , Cenchrus/genetics , Cenchrus/metabolism , Animal Nutritional Physiological Phenomena , Female , Animal Feed/analysis , Digestion
6.
Int J Biol Macromol ; 268(Pt 2): 131984, 2024 May.
Article in English | MEDLINE | ID: mdl-38692552

ABSTRACT

Biomass materials substituting for petroleum-based polymers occupy an important position in achieving sustainable development. Cellulose, a typical biomass material, stands out as the primary choice for producing eco-friendly packaging materials. However, it is still a challenge to efficiently utilize cellulose from waste biomass materials in practice. Herein, cellulose-based films were prepared by pretreating waste corn straw, separating straw husk, straw pith and straw leaf, and extracting cellulose through alkali and sodium chlorite treatment to improve its mechanical properties using the cross-linked polyvinyl alcohol (PVA) method in this work. The prepared composite films were characterized by Fourier transform infrared spectrometer (FTIR), X-ray diffraction instrument (XRD), Scanning electron microscopy (SEM), Thermogravimetric (TG) and mechanical properties. The results indicated that corn straw husk exhibited the highest cellulose content of 31.67 wt%, and obtained husk cellulose had the highest crystallinity of 52.5 %. Compared to corn straw, the crystallinity of husk cellulose, pith cellulose and leaf cellulose increased by 19.5 %, 16.4 % and 44.1 %, respectively. Husk cellulose/PVA composite films were the most thermally stable, with a maximum weight loss temperature of 346.8 °C. In addition, the husk cellulose/PVA composite film had the best tensile strength of 37 MPa. Meanwhile, the composite films had good UV shielding, low water vapor transmission rate and biodegradability. Therefore, this work provides a fine utilization route of waste corn straw, and as-prepared cellulose based films have potential application in eco-friendly packaging materials.


Subject(s)
Cellulose , Polyvinyl Alcohol , Zea mays , Zea mays/chemistry , Polyvinyl Alcohol/chemistry , Cellulose/chemistry , Tensile Strength , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Thermogravimetry
7.
Int J Biol Macromol ; 268(Pt 2): 131996, 2024 May.
Article in English | MEDLINE | ID: mdl-38697417

ABSTRACT

This research investigated the effect of lecithin on the complexation of lauric acid with maize starch, potato starch, waxy maize starch, and high amylose maize starch. Rapid visco analysis showed that lecithin altered the setback pattern of potato starch-lauric acid and maize starch-lauric acid mixtures but not waxy maize starch-lauric acid. Further investigation, including differential scanning calorimetry, complex index, and X-ray diffraction, showed that lecithin enhanced the complexation of maize starch, potato starch, and high amylose maize starch with lauric acid. Fourier transform infrared and Raman spectroscopy revealed increasingly ordered structures formed in maize starch-lauric acid-lecithin, potato starch-lauric acid-lecithin, and high amylose maize starch-lauric acid-lecithin systems compared to corresponding binary systems. These highly ordered complexes of maize starch, potato starch, and high amylose maize starch also demonstrated greater resistance to in vitro enzymatic hydrolysis. Waxy maize starch complexation however remained unaffected by lecithin. The results of this study show that lecithin impacts complexation between fatty acids and native starches containing amylose, with the starch source being critical. Lecithin minimally impacted the complexation of low amylose starch and fatty acids.


Subject(s)
Amylose , Lauric Acids , Lecithins , Starch , Zea mays , Lauric Acids/chemistry , Lecithins/chemistry , Starch/chemistry , Amylose/chemistry , Zea mays/chemistry , Solanum tuberosum/chemistry , Hydrolysis , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Calorimetry, Differential Scanning
8.
Braz J Biol ; 84: e277974, 2024.
Article in English | MEDLINE | ID: mdl-38808784

ABSTRACT

Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method to determine the fumonisin content in whole maize grains.


Subject(s)
Fumonisins , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Zea mays , Zea mays/chemistry , Fumonisins/analysis , Spectroscopy, Near-Infrared/methods , Hyperspectral Imaging/methods , Reproducibility of Results , Chemometrics/methods
9.
Appl Microbiol Biotechnol ; 108(1): 348, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809353

ABSTRACT

Mycotoxin production by aflatoxin B1 (AFB1) -producing Aspergillus flavus Zt41 and sterigmatocystin (ST) -hyperproducer Aspergillus creber 2663 mold strains on corn and rice starch, both of high purity and nearly identical amylose-amylopectin composition, as the only source of carbon, was studied. Scanning electron microscopy revealed average starch particle sizes of 4.54 ± 0.635 µm and 10.9 ± 2.78 µm, corresponding to surface area to volume ratios of 127 1/µm for rice starch and 0.49 1/µm for corn starch. Thus, a 2.5-fold difference in particle size correlated to a larger, 259-fold difference in surface area. To allow starch, a water-absorbing powder, to be used as a sole food source for Aspergillus strains, a special glass bead system was applied. AFB1 production of A. flavus Zt41 was determined to be 437.6 ± 128.4 ng/g and 90.0 ± 44.8 ng/g on rice and corn starch, respectively, while corresponding ST production levels by A. creber 2663 were 72.8 ± 10.0 µg/g and 26.8 ± 11.6 µg/g, indicating 3-fivefold higher mycotoxin levels on rice starch than on corn starch as sole carbon and energy sources. KEY POINTS: • A glass bead system ensuring the flow of air when studying powders was developed. • AFB1 and ST production of A. flavus and A. creber on rice and corn starches were studied. • 3-fivefold higher mycotoxin levels on rice starch than on corn starch were detected.


Subject(s)
Oryza , Starch , Zea mays , Oryza/chemistry , Zea mays/chemistry , Starch/metabolism , Aspergillus/metabolism , Aspergillus flavus/metabolism , Aflatoxin B1/biosynthesis , Aflatoxin B1/metabolism , Sterigmatocystin/biosynthesis , Sterigmatocystin/metabolism , Microscopy, Electron, Scanning , Particle Size , Mycotoxins/metabolism , Mycotoxins/biosynthesis , Glass
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124287, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701573

ABSTRACT

The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs. dry basis) on the predictive capabilities of the NIR analysis. The study utilized 492 Corn Whole Plant (CWP) and 405 High Moisture Corn (HMC) samples, sourced from various farms across Italy. Spectral data were acquired from both undried, unground and dried, ground samples using laboratory bench NIR instruments, covering a spectral range of 1100 to 2498 nm. The reference chemical composition of these samples was analyzed and presented in two formats: on a wet matter basis and on a dry matter basis. The study revealed that calibrations based on undried samples generally exhibited lower predictive accuracy for most traits, with the exception of Dry Matter (DM). Notably, the decline in predictive performance was more pronounced in highly moist products like CWP, where the average error increased by 60-70%. Conversely, this reduction in accuracy was relatively contained (10-15%) in drier samples such as HMC. The Standard Error of Cross-Validation (SECV) values for DMres, Ash, CP, and EE were notably low, at 0.39, 0.30, 0.29, 0.21% for CWP and 0.49, 0.14, 0.25, 0.14% for HMC, respectively. These results align with previous studies, indicating the reliability of NIR spectroscopy in diverse moisture contexts. The study attributes this variance to the interference caused by water in 'as is' samples, where the spectral features predominantly reflect water content, thereby obscuring the spectral signatures of other nutrients. In terms of calibration development strategies, the study concludes that there is no significant difference in predictive performance between undried calibrations based on either 'dry matter' or 'as is' basis. This finding emphasizes the potential of NIR spectroscopy in diverse moisture contexts, although with varying degrees of accuracy contingent upon the moisture content of the analyzed samples. Overall, this research provides valuable insights into the calibration strategies of NIR spectroscopy and its practical applications in agricultural settings, particularly for on-farm forage analysis.


Subject(s)
Animal Feed , Spectroscopy, Near-Infrared , Zea mays , Spectroscopy, Near-Infrared/methods , Calibration , Zea mays/chemistry , Animal Feed/analysis , Water/analysis , Water/chemistry , Desiccation
11.
Nutrients ; 16(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732559

ABSTRACT

(1) Background: Fortifying maize and wheat flours with folic acid has effectively reduced neural tube defect-affected births. However, maize and wheat flours may not be widely consumed in all countries; further reduction in neural tube defect-affected births could benefit from the identification of alternative food vehicles. We aimed to use dietary intake or apparent consumption data to determine alternative food vehicles for large-scale fortification with folic acid in low-income and lower-middle-income countries (LILMICs) and identify current research related to examining the technological feasibility of fortifying alternative foods with folic acid. (2) Methods: We identified 81 LILMICs, defined by the World Bank's (WB) 2018 income classifications. To identify dietary intake or apparent consumption, we reviewed WB's Microdata Library and Global Health Data Exchange for national surveys from 1997-2018. We reviewed survey reports for dietary intake or apparent consumption data and analyzed survey datasets for population coverage of foods. We defined alternative food vehicles as those that may cover/be consumed by ≥30% of the population or households; cereal grains (maize and wheat flours and rice) were included as an alternative food vehicle if a country did not have existing mandatory fortification legislation. To identify current research on fortification with folic acid in foods other than cereal grains, we conducted a systematic review of published literature and unpublished theses, and screened for foods or food products. (3) Results: We extracted or analyzed data from 18 national surveys and countries. The alternative foods most represented in the surveys were oil (n = 16), sugar (n = 16), and salt (n = 14). The coverage of oil ranged from 33.2 to 95.7%, sugar from 32.2 to 98.4%, and salt from 49.8 to 99.9%. We found 34 eligible studies describing research on alternative foods. The most studied alternative foods for fortification with folic acid were dairy products (n = 10), salt (n = 6), and various fruit juices (n = 5). (4) Conclusions: Because of their high coverage, oil, sugar, and salt emerge as potential alternative foods for large-scale fortification with folic acid. However, except for salt, there are limited or no studies examining the technological feasibility of fortifying these foods with folic acid.


Subject(s)
Edible Grain , Folic Acid , Food, Fortified , Neural Tube Defects , Triticum , Folic Acid/administration & dosage , Humans , Neural Tube Defects/prevention & control , Triticum/chemistry , Edible Grain/chemistry , Flour/analysis , Zea mays/chemistry , Developing Countries
12.
Sci Total Environ ; 931: 172973, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705294

ABSTRACT

In this work, corn straw was used as raw material, Hummers method and activation were used to adjust the graphite structure in biochar, and preparing straw based biochar (H-BCS) with ultra-high specific surface area (3441.80 m2/g), highly total pore volume (1.9859 cm3/g), and further enhanced physicochemical properties. Compared with untreated straw biochar (BCS), the specific surface area and total pore volume of H-BCS were increased by 47.24 % and 55.85 %, respectively. H-BCS showed good removal ability in subsequent experiments by using chloramphenicol (CP), hexavalent chromium (Cr6+), and crystal violet (CV) as adsorption models. In addition, the adsorption capacities of H-BCS (CP: 1396.30 mg/g, Cr6+: 218.40 mg/g, and CV: 1246.24 mg/g) are not only higher than most adsorbents, even after undergoing 5 cycles of regeneration, its adsorption capacity remains above 80 %, indicating significant potential for practical applications. In addition, we also speculated and analyzed the conjecture about the "graphite-structure regulation" during the preparation process, and finally discussed the possible mechanism during the adsorption processes. We hope this work could provide a new strategy to solve the restriction of biochar performance by further exploring the regulation of graphite structure in carbon materials.


Subject(s)
Charcoal , Graphite , Water Pollutants, Chemical , Charcoal/chemistry , Graphite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Waste Disposal, Fluid/methods , Chromium/chemistry , Water Pollution/prevention & control , Zea mays/chemistry , Water Purification/methods
13.
Food Chem ; 453: 139568, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754353

ABSTRACT

Starch retrogradation is of great importance to the quality of starch-based food. This study investigated the effect of partial gelatinization (PG) synergizing with polyphenol (epicatechin, EC; epigallocatechin gallate, EGCG) on the multi-scale structure and short/long-term retrogradation of corn starch (CS). The PG synergizing with EC/EGCG substantially suppressed the short/long-term retrogradation properties of CS. These could be confirmed by the decreased storage modulus and viscosity, the relative crystallinity (1.54%, 3.56%), and the retrogradation degree (9.99%, 20.18%) of CS during storage for 1, 14 days after PG synergizing with EGCG and EC, respectively. This is because PG treatment promoted the hydrogen bond interaction between disordered starch molecules and EC/EGCG. These were proven by the larger aggregation, more and brighter fluorescents, and the reduced long/short-range order structures in CS after PG synergizing with EC/EGCG. This study is helpful for the development of foods with enhanced nutrition and low-retrogradation.


Subject(s)
Catechin , Starch , Zea mays , Catechin/chemistry , Catechin/analogs & derivatives , Starch/chemistry , Zea mays/chemistry , Viscosity
14.
Food Chem ; 453: 139711, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781893

ABSTRACT

The objective of the current work was to evaluate the impacts of dielectric barrier discharge plasma and repeated dry-heat treatments on the acetylation process of corn starch. The combined modification resulted in a higher substitution degree of acetate groups on starch chains compared to the acetylation treatment alone. This outcome was linked to the increase in surface area and structural organization level of granules achieved through the application of plasma and heating/cooling cycles, respectively. The successful esterification of starch structure was verified through FTIR (1710 cm-1) and 1H NMR (2 ppm). With the increase in plasma treatment duration up to 20 min, gelatinization enthalpy increased (10.81 J/g) due to the cross-linking reaction. Starch acetate produced through the combined treatment could find the application in the development of low-calorie food formulations due to its high resistant starch (70.5 g/100 g) and low viscosity (43 mPa s).


Subject(s)
Hot Temperature , Starch , Zea mays , Starch/chemistry , Zea mays/chemistry , Acetylation , Viscosity , Plasma Gases/chemistry
15.
Food Chem ; 453: 139668, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38805943

ABSTRACT

The Asia Pacific Metrology Program and the Accreditation Cooperation joint Proficiency Testing (PT) program for the quantification of genetically modified maize MON87427 was organized by the National Institute of Metrology, China, to enhance the measurement accuracy and metrological traceability in the region. Certified reference materials were employed as test samples; metrologically traceable certified reference values served as PT reference values (PTRVs) for evaluating the participants results. The consensus values obtained from the participants were higher than the assigned values, potentially due to the systematic effects of DNA extraction process. The participants' relatively poor overall performance by the ζ-score compared with z-score demonstrates their need to thoroughly investigate quantification bias to elevate the measurement capability of genetically modified (GM) content and deepen their understanding of uncertainty estimation. This program confirmed the importance of using metrologically traceable reference values instead of consensus values as PTRV for reliable performance assessment.


Subject(s)
Plants, Genetically Modified , Zea mays , Zea mays/genetics , Zea mays/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Reference Values , China , Laboratory Proficiency Testing , Reference Standards , Food, Genetically Modified
16.
Bioresour Technol ; 402: 130772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703959

ABSTRACT

To explore the enzyme-enhanced strategy of a continuous anaerobic dynamic membrane reactor (AnDMBR), the anaerobic codigestion system of food waste and corn straw was first operated stably, and then the best combination of compound enzymes (laccase, endo-ß-1,4-glucanase, xylanase) was determined via a series of batch trials. The results showed that the methane yield (186.8 ± 19.9 mL/g VS) with enzyme addition was 12.2 % higher than that without enzyme addition. Furthermore, the removal rates of cellulose, hemicellulose and lignin increased by 31 %, 36 % and 78 %, respectively. In addition, dynamic membranes can form faster and more stably with enzyme addition. The addition of enzymes changed the structure of microbial communities while maintaining sufficient hydrolysis bacteria (Bacteroidetes), promoting the proliferation of Proteobacteria as a dominant strain and bringing stronger acetylation ability. In summary, the compound enzyme strengthening strategy successfully improved the methane production, dynamic membrane effect, and degradation rate of lignocellulose in AnDMBR.


Subject(s)
Bioreactors , Lignin , Membranes, Artificial , Methane , Lignin/metabolism , Anaerobiosis , Methane/metabolism , Hydrolysis , Zea mays/chemistry , Enzymes/metabolism , Bacteria/metabolism
17.
Bioresour Technol ; 402: 130818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735342

ABSTRACT

This study aims to analyse the potential availability of essential metals including as Co, Fe, Ni, Zn, Mn, and Cu and non-essential metals such as Pb, Cr, and Cd within anaerobic mono- and co-digestion of pig manure and maize. The metals partitioning was determined using the Modified BCR (European Community Bureau of Reference) sequential extraction at defined intervals over a 45-days period, correlating changes in metals speciation with key digestion variables. The findings revealed that Cr, Cu, Fe, and Pb were predominantly associated with the oxidisable fraction, while Zn, Mn, and Cd were potentially available in both processes. Notably, NH4+-N and the VFAs, except propionic acid, correlated significantly with the available fractions of Co, Mn, Ni, Zn, Cr, and Pb during mono-digestion of pig manure. The wider pH range and the chemical properties of the feedstock in co-digestion resulted in varied correlations between the metals availability and the digestion variables.


Subject(s)
Manure , Metals , Zea mays , Animals , Zea mays/chemistry , Anaerobiosis , Swine , Hydrogen-Ion Concentration , Sus scrofa
18.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702005

ABSTRACT

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.


Subject(s)
Adhesives , Starch , Water , Zea mays , Starch/chemistry , Water/chemistry , Adhesives/chemistry , Zea mays/chemistry , Oxidation-Reduction , Temperature , Shear Strength , Urea/chemistry
19.
Int J Biol Macromol ; 269(Pt 1): 132055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704073

ABSTRACT

Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.


Subject(s)
Choline , Deep Eutectic Solvents , Lactic Acid , Lignin , Niobium , Lignin/chemistry , Niobium/chemistry , Catalysis , Choline/chemistry , Hydrolysis , Deep Eutectic Solvents/chemistry , Lactic Acid/chemistry , Zea mays/chemistry , Chemical Fractionation/methods
20.
Int J Biol Macromol ; 269(Pt 2): 132092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718993

ABSTRACT

This study investigated the potential effect of blending corn starch and pea protein isolate in various ratios (100:0, 70:30, 50:50, 30:70, and 0:100) on the aging properties of biodegradable films. Unlike previous research, the focus was on the often-overlooked aspect of film aging. Fourier-transform infrared spectroscopy and X-ray diffraction demonstrated the physical blending of corn starch and pea protein, along with chemical bonding and conformational changes. The optical and microstructural properties showed the formation of smooth, homogeneous films with good compatibility between the polymers. The water resistance, barrier, and mechanical properties corresponding to the intrinsic nature of protein polymers showed a minimized fluctuations in film properties as film ages, with a reduction of at least twice when protein is added. Remarkably, the blend with a ratio of 30:70 demonstrated the most stable properties during aging. These results demonstrated that blending the pea protein isolate was favorable for delaying the retrogradation and recrystallization of corn starch films. Understanding how these blends influence the aging characteristics of films is not only a novel contribution to the scientific community but also holds practical significance, potentially opening a potential for applications in various industries.


Subject(s)
Pea Proteins , Starch , Zea mays , Starch/chemistry , Zea mays/chemistry , Pea Proteins/chemistry , Biopolymers/chemistry , Chemical Phenomena , X-Ray Diffraction , Water/chemistry , Spectroscopy, Fourier Transform Infrared , Pisum sativum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...