Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31972973

ABSTRACT

Lutein and zeaxanthin play important roles in visual functions, but their influence on early visual development is unclear. We related maternal lutein and zeaxanthin concentrations during pregnancy to offspring visual acuity (VA) in 471 mother-child pairs from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort. Maternal concentrations of plasma lutein and zeaxanthin were determined at delivery. We measured uncorrected distance of VA in 3-year old children using a LEA Symbols chart; readings were converted to the logarithm of Minimum Angle of Resolution (logMAR), with >0.3 logMAR indicating poor VA. Associations were examined using linear or Poisson regression adjusted for confounders. The median (inter-quartile range) of maternal lutein and zeaxanthin concentrations were 0.13 (0.09, 0.18) and 0.09 (0.07, 0.12) µmol/L, respectively. A total of 126 children had poor VA. The highest tertile of maternal zeaxanthin concentration was associated with 38% lower likelihood of poor VA in children (95% CI: 0.42, 0.93, p-Trends = 0.02). Higher maternal lutein concentrations were associated with a lower likelihood of poor VA in children (RR 0.60 (95% CI: 0.40, 0.88) for middle tertile; RR 0.78 (95% CI: 0.51, 1.19) for highest tertile (p-Quadratic = 0.02)). In conclusion, lutein and zeaxanthin status during pregnancy may influence offspring early visual development; but the results require confirmation with further studies, including more comprehensive measurements of macular functions.


Subject(s)
Lutein/blood , Maternal Nutritional Physiological Phenomena , Pregnancy Complications/blood , Visual Acuity , Zeaxanthins/blood , Adult , Child, Preschool , Female , Humans , Lutein/deficiency , Male , Maternal Serum Screening Tests , Outcome Assessment, Health Care , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Singapore , Vision Disorders/etiology , Zeaxanthins/deficiency
3.
Invest Ophthalmol Vis Sci ; 57(3): 1361-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27002296

ABSTRACT

PURPOSE: We quantified fundus autofluorescence (FAF) in the nonhuman primate retina as a function of age and diets lacking lutein and zeaxanthin (L/Z) and omega-3 fatty acids. METHODS: Quantitative FAF was measured in a cross-sectional study of rhesus macaques fed a standard diet across the lifespan, and in aged rhesus macaques fed lifelong diets lacking L/Z and providing either adequate or deficient levels of omega-3 fatty acids. Macular FAF images were segmented into multiple regions of interest, and mean gray values for each region were calculated using ImageJ. The resulting FAF values were compared across ages within the standard diet animals, and among diet groups and regions. RESULTS: Fundus autofluorescence increased with age in the standard diet animals, and was highest in the perifovea. Monkeys fed L/Z-free diets with either adequate or deficient omega-3 fatty acids had significantly higher FAF overall than age-matched standard diet monkeys. Examined by region, those with adequate omega-3 fatty acids had higher FAF in the fovea and superior regions, while monkeys fed the diet lacking L/Z and omega-3 fatty acids had higher FAF in all regions. CONCLUSIONS: Diets devoid of L/Z resulted in increased retinal autofluorescence, with the highest values in animals also lacking omega-3 fatty acids. The increase was equivalent to a 12- to 20-year acceleration in lipofuscin accumulation compared to animals fed a standard diet. Together these data add support for the role of these nutrients as important factors in lipofuscin accumulation, retinal aging, and progression of macular disease.


Subject(s)
Aging/metabolism , Dietary Supplements , Fatty Acids, Omega-3/metabolism , Fluorescein Angiography/methods , Fovea Centralis/pathology , Lutein/deficiency , Retinal Diseases/diagnosis , Zeaxanthins/deficiency , Animals , Cross-Sectional Studies , Disease Models, Animal , Fundus Oculi , Macaca mulatta , Retinal Diseases/metabolism
4.
J Exp Bot ; 66(5): 1259-70, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25429003

ABSTRACT

The efficiency of protective energy dissipation by non-photochemical quenching (NPQ) in photosystem II (PSII) has been recently quantified by a new non-invasive photochemical quenching parameter, qPd. PSII yield (ФPSII) was expressed in terms of NPQ, and the extent of damage to the reaction centres (RCIIs) was calculated via qPd as: ФPSII=qPd×(F v/F m)/{1+[1-(F v/F m)]×NPQ}. Here this approach was used to determine the amount of NPQ required to protect all PSII reaction centres (pNPQ) under a gradually increasing light intensity, in the zeaxanthin-deficient (npq1) Arabidopsis mutant, compared with PsbS protein-deficient (npq4) and wild-type plants. The relationship between maximum pNPQ and tolerated light intensity for all plant genotypes followed similar trends. These results suggest that under a gradually increasing light intensity, where pNPQ is allowed to develop, it is only the amplitude of pNPQ which is the determining factor for protection. However, the use of a sudden constant high light exposure routine revealed that the presence of PsbS, not zeaxanthin, offered better protection for PSII. This was attributed to a slower development of pNPQ in plants lacking PsbS in comparison with plants that lacked zeaxanthin. This research adds further support to the value of pNPQ and qPd as effective parameters for assessing NPQ effectiveness in different types of plants.


Subject(s)
Arabidopsis/metabolism , Light-Harvesting Protein Complexes/deficiency , Zeaxanthins/deficiency , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Light , Light-Harvesting Protein Complexes/genetics , Photosynthesis/radiation effects , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...