Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.990
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829132

ABSTRACT

Microglia are highly dynamic cells and their migration and colonization of the brain parenchyma is a crucial step for proper brain development and function. Externally developing zebrafish embryos possess optical transparency, which along with well-characterized transgenic reporter lines that fluorescently label microglia, make zebrafish an ideal vertebrate model for such studies. In this paper, we take advantage of the unique features of the zebrafish model to visualize the dynamics of microglia cells in vivo and under physiological conditions. We use confocal microscopy to record a timelapse of microglia cells in the optic tectum of the zebrafish embryo and then, extract tracking data using the IMARIS 10.0 software to obtain the cells' migration path, mean speed, and distribution in the optic tectum at different developmental stages. This protocol can be a useful tool to elucidate the physiological significance of microglia behavior in various contexts, contributing to a deeper characterization of these highly motile cells.


Subject(s)
Microglia , Microscopy, Confocal , Zebrafish , Animals , Zebrafish/embryology , Microglia/cytology , Microscopy, Confocal/methods , Cell Movement/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Embryo, Nonmammalian/cytology
2.
Curr Top Dev Biol ; 159: 372-405, 2024.
Article in English | MEDLINE | ID: mdl-38729682

ABSTRACT

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Mesoderm , Somites , Animals , Body Patterning/genetics , Somites/embryology , Somites/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mesoderm/cytology , Zebrafish/embryology , Zebrafish/genetics , Signal Transduction , Biological Clocks/genetics
3.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722096

ABSTRACT

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Subject(s)
Endothelial Cells , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins , Lymphatic Vessels , Tumor Suppressor Proteins , Zebrafish Proteins , Zebrafish , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zebrafish/genetics , Zebrafish/embryology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Enhancer Elements, Genetic/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Endothelial Cells/metabolism , Lymphangiogenesis/genetics , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic/genetics , Mice
4.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38742432

ABSTRACT

Development of the vascular system is regulated by multiple signaling pathways mediated by receptor tyrosine kinases. Among them, angiopoietin (Ang)/Tie signaling regulates lymphatic and blood vessel development in mammals. Of the two Tie receptors, Tie2 is well known as a key mediator of Ang/Tie signaling, but, unexpectedly, recent studies have revealed that the Tie2 locus has been lost in many vertebrate species, whereas the Tie1 gene is more commonly present. However, Tie1-driven signaling pathways, including ligands and cellular functions, are not well understood. Here, we performed comprehensive mutant analyses of angiopoietins and Tie receptors in zebrafish and found that only angpt1 and tie1 mutants show defects in trunk lymphatic vessel development. Among zebrafish angiopoietins, only Angpt1 binds to Tie1 as a ligand. We indirectly monitored Ang1/Tie1 signaling and detected Tie1 activation in sprouting endothelial cells, where Tie1 inhibits nuclear import of EGFP-Foxo1a. Angpt1/Tie1 signaling functions in endothelial cell migration and proliferation, and in lymphatic specification during early lymphangiogenesis, at least in part by modulating Vegfc/Vegfr3 signaling. Thus, we show that Angpt1/Tie1 signaling constitutes an essential signaling pathway for lymphatic development in zebrafish.


Subject(s)
Angiopoietin-1 , Lymphangiogenesis , Lymphatic Vessels , Receptor, TIE-1 , Signal Transduction , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Angiopoietin-1/metabolism , Angiopoietin-1/genetics , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Lymphangiogenesis/genetics , Cell Movement , Endothelial Cells/metabolism , Protein Binding , Cell Proliferation , Vascular Endothelial Growth Factor Receptor-3/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Mutation/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/genetics , Gene Expression Regulation, Developmental
5.
Science ; 384(6695): 573-579, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696577

ABSTRACT

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Subject(s)
Calcium Channels , Habenula , Neurogenesis , Neurons , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Habenula/metabolism , Habenula/embryology , Loss of Function Mutation , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neurons/metabolism , Receptors, Wnt/metabolism , Receptors, Wnt/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Calcium Channels/genetics , Calcium Channels/metabolism
6.
Article in English | MEDLINE | ID: mdl-38821665

ABSTRACT

Wastewater released by textile dyeing industries is a major source of pollution. Untreated wastewater released from indigo dyeing operations affects aquatic ecosystems and threatens their biodiversity. We have assessed the toxicity of natural and synthetic indigo dye in zebrafish embryos, using the endpoints of teratogenicity, genotoxicity, and histopathology. The zebrafish embryo toxicity test (ZFET) was conducted, exposing embryos to ten concentrations of natural and synthetic indigo dyes; the 96-hour LC50 values were approximately 350 and 300 mg/L, respectively. Both dyes were teratogenic, causing egg coagulation, tail detachment, yolk sac edema, pericardial edema, and tail bend, with no significant difference in effects between the natural and synthetic dyes. Both dyes were genotoxic (using comet assay for DNA damage). Real-time RT-PCR studies showed upregulation of the DNA-repair genes FEN1 and ERCC1. Severe histological changes were seen in zebrafish larvae following exposure to the dyes. Our results show that indigo dyes may be teratogenic and genotoxic to aquatic organisms, underscoring the need for development of sustainable practices and policies for mitigating the environmental impacts of textile dyeing.


Subject(s)
Coloring Agents , DNA Damage , Embryo, Nonmammalian , Teratogens , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Coloring Agents/toxicity , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity , Teratogens/toxicity , Indigo Carmine/toxicity , Mutagenicity Tests , Comet Assay
7.
Dev Biol ; 512: 70-88, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729405

ABSTRACT

In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.


Subject(s)
Cell Movement , Lateral Line System , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/embryology , Lateral Line System/embryology , Lateral Line System/cytology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Wnt Signaling Pathway , Fibroblast Growth Factors/metabolism , Cell Differentiation , Stem Cells/metabolism , Stem Cells/cytology , Signal Transduction , Cellular Reprogramming
8.
Dev Biol ; 512: 44-56, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38729406

ABSTRACT

Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes. We applied unsupervised clustering algorithms to unbiasedly classify the recovered mutants into three classes. Further computational analysis revealed that each of the recovered mutations in these three classes has a unique phenotype on node-subtype composition and distribution within the intrahepatic biliary network. In addition, we found most of the recovered mutations are viable. In those mutant fish, which are already good animal models to study chronic cholestatic liver diseases, the biliary network phenotypes persist into adulthood. Altogether, this study provides unique genetic and computational toolsets that advance our understanding of the molecular pathways leading to biliary system malformation and cholestatic liver diseases.


Subject(s)
Biliary Tract , Mutation , Zebrafish , Zebrafish/genetics , Zebrafish/embryology , Animals , Mutation/genetics , Biliary Tract/embryology , Biliary Tract/metabolism , Phenotype , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791566

ABSTRACT

During the twenty-first century, engineered nanomaterials (ENMs) have attracted rising interest, globally revolutionizing all industrial sectors. The expanding world population and the implementation of new global policies are increasingly pushing society toward a bioeconomy, focused on fostering the adoption of bio-based nanomaterials that are functional, cost-effective, and potentially secure to be implied in different areas, the medical field included. This research was focused on silica nanoparticles (SiO2-NPs) of bio-based and synthetic origin. SiO2-NPs are composed of silicon dioxide, the most abundant compound on Earth. Due to their characteristics and biocompatibility, they are widely used in many applications, including the food industry, synthetic processes, medical diagnosis, and drug delivery. Using zebrafish embryos as in vivo models, we evaluated the effects of amorphous silica bio-based NPs from rice husk (SiO2-RHSK NPs) compared to commercial hydrophilic fumed silica NPs (SiO2-Aerosil200). We evaluated the outcomes of embryo exposure to both nanoparticles (NPs) at the histochemical and molecular levels to assess their safety profile, including developmental toxicity, neurotoxicity, and pro-inflammatory potential. The results showed differences between the two silica NPs, highlighting that bio-based SiO2-RHSK NPs do not significantly affect neutrophils, macrophages, or other innate immune system cells.


Subject(s)
Biocompatible Materials , Embryo, Nonmammalian , Nanoparticles , Silicon Dioxide , Zebrafish , Zebrafish/embryology , Animals , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Embryo, Nonmammalian/drug effects , Biocompatible Materials/chemistry , Embryonic Development/drug effects , Materials Testing
10.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 82-88, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814231

ABSTRACT

Milrinone, a phosphodiesterase III inhibitor with contractile and vasodilatory effects, is widely used in acute decompensated heart failure and medically refractory end-stage heart failure (HF). The adverse reactions of milrinone have been extensively explored clinically, but its possible toxicities and underlying molecular mechanisms in embryo development need further understanding as its clinical applications increase. Herein, we assessed the milrinone toxicity using the zebrafish embryotoxicity test (ZET), with a view of providing evidence and guidance for gravidas medicine. We carried out ZET by exposing embryos to a milrinone culture with a series concentration gradients since 1.5 hours post fertilization (hpf) and observed and assessed mortality and hatching rates of drug-treated zebrafishes at 24, 48, 72, and 96 hpf. No significant lethal effect was found in milrinone-treated zebrafish, but hatching rate of eggs at 48 hpf was up-regulated with the increase of milrinone concentration. The impact of milrinone on embryogenesis was assessed through body length, eye area, yolk sac area, swim bladder inflation area, pericardial area and venous congestion area at 96hpf. 150 µg/mL or higher milrinone treatment showed significant effects in the indicators. Organ disorders including enlarged pericardium, liver atrophy and decreased blood vessels were observed in dysplasia individuals versus controls. TUNEL assay suggested the ability of milrinone to induce apoptosis in malformation embryos. Quantitative real-time PCR showed aberrant expressions of transcription factors associated with heart development and genes related to liver development and apoptosis regulation. Therefore, ZET is feasible for the milrinone toxicity test, and high-dose milrinone causes harm to the embryonic development of zebrafish, especially in embryonic carcinogenesis, vasculogenesis, and hepatogenesis.


Subject(s)
Embryo, Nonmammalian , Embryonic Development , Milrinone , Zebrafish , Animals , Milrinone/toxicity , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Apoptosis/drug effects , Toxicity Tests/methods , Gene Expression Regulation, Developmental/drug effects
11.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757770

ABSTRACT

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Subject(s)
Aedes , Drug Design , Houseflies , Insecticides , Molecular Docking Simulation , Pyrazoles , Animals , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Aedes/drug effects , Aedes/growth & development , Structure-Activity Relationship , Houseflies/drug effects , Houseflies/growth & development , Aphids/drug effects , Aphids/growth & development , Moths/drug effects , Moths/growth & development , Molecular Structure , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Zebrafish/embryology
12.
Anat Histol Embryol ; 53(3): e13044, 2024 May.
Article in English | MEDLINE | ID: mdl-38695121

ABSTRACT

The vitamin D receptor (VDR) signalling has been implicated in vertebrate limb or fin formation. However, the involvement of VDR signalling in the early stages of limb/fin development remains to be elucidated. In this study, the role of VDR signalling in pectoral fin development was investigated in zebrafish embryos. Knockdown of vdr induced the severe impairment of pectoral fin development. The zebrafish larvae lacking vdr exhibited reduced pectoral fins with no skeletal elements. In situ hybridization revealed depletion of vdr downregulated fibroblast growth factor 24 (fgf24), a marker of early pectoral fin bud mesenchyme, in the presumptive fin field even before fin buds were visible. Moreover, a perturbed expression pattern of bone morphogenetic protein 4 (bmp4), a marker of the pectoral fin fold, was observed in the developing fin buds of zebrafish embryos that lost the vdr function. These findings suggest that VDR signalling is crucial in the early stages of fin development, potentially influencing the process by regulating other signalling molecules such as Fgf24 and Bmp4.


Subject(s)
Animal Fins , Bone Morphogenetic Protein 4 , Fibroblast Growth Factors , Receptors, Calcitriol , Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Animal Fins/embryology , Animal Fins/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gene Knockdown Techniques , Signal Transduction , Gene Expression Regulation, Developmental , In Situ Hybridization
13.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693109

ABSTRACT

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Macrophages , Zebrafish , Zebrafish/embryology , Animals , Macrophages/metabolism , Humans , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cell Transplantation/methods , Embryo, Nonmammalian/metabolism , Transplantation, Heterologous , Phagocytosis
14.
Elife ; 122024 May 29.
Article in English | MEDLINE | ID: mdl-38809590

ABSTRACT

Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.


In mammals and other animals with backbones, the cells that will make up blood and immune cells are generated during a very narrow timeframe in embryonic development. These cells, called hematopoietic stem cells and progenitors (or HSPCs for short), emerge from tissue known as hemogenic endothelium that makes up the floor of early blood vessels. For HPSCs to eventually specialise into different types of blood and immune cells, they require diverse migratory and homing properties that, ultimately, will determine the specific type of functions they exert. An important question for scientists studying the development of different blood and immune cell types is when this commitment to functional diversity is established. It could, for example, arise due to cells in the hemogenic endothelium having different origins. Alternatively, the signals that generate hemogenic endothelium cells could be responsible. It is also possible that both explanations are true, and that having different mechanisms involved ensures diversity in populations of HSPCs. To investigate differences between the HSPCs emerging from the hemogenic endothelium, Torcq et al. studied zebrafish embryos that had been modified so that one of the proteins involved in sensing cell polarity ­ where the top and bottom of the cell are located ­ was fluorescent. Live imaging of the embryos showed that two types of cells, with striking differences in morphology, emerge from the hemogenic tissue. In addition, one cell type displays the same polarity as the other vessel cells, whereas the other does not. Torcq et al. also present evidence suggesting that the signals responsible for controlling this cell polarity are provided by surrounding blood vessel cells, supporting the idea of an interplay between the different cell types. The finding that two different cell types emerge from the hemogenic endothelium, reveals a potential new source of diversity in HSPCs. Ultimately, this is expected to contribute to their functional complexity, resulting in both long-term stem cells that retain their full regenerative potential into adulthood and more specialized blood and immune cells.


Subject(s)
Cell Polarity , Core Binding Factor Alpha 2 Subunit , Hematopoietic Stem Cells , Zebrafish Proteins , Zebrafish , Zebrafish/embryology , Animals , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hemangioblasts/metabolism , Hemangioblasts/cytology , Hemangioblasts/physiology , Embryo, Nonmammalian/metabolism , Animals, Genetically Modified
15.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
16.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683849

ABSTRACT

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Subject(s)
Brain , Cell Differentiation , Pericytes , Transcription Factors , Zebrafish Proteins , Zebrafish , Pericytes/metabolism , Pericytes/cytology , Animals , Zebrafish/metabolism , Zebrafish/embryology , Zebrafish/genetics , Brain/metabolism , Brain/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neural Crest/cytology , Mesoderm/metabolism , Mesoderm/cytology , Signal Transduction , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics
17.
Article in English | MEDLINE | ID: mdl-38641085

ABSTRACT

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 µg/L) and DCF (at 50 and 500 µg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1ß expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.


Subject(s)
Diclofenac , Embryonic Development , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/embryology , Diclofenac/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Embryonic Development/drug effects , Oxidative Stress/drug effects , Embryo, Nonmammalian/drug effects , Nanoparticles/toxicity , Microplastics/toxicity , Drug Synergism
18.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article in English | MEDLINE | ID: mdl-38684467

ABSTRACT

The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.


Subject(s)
Drug Discovery , Drug Evaluation, Preclinical , Embryo, Nonmammalian , Zebrafish , Zebrafish/embryology , Animals , Drug Discovery/methods , Embryo, Nonmammalian/drug effects , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Anti-Infective Agents/pharmacology
19.
Article in English | MEDLINE | ID: mdl-38570177

ABSTRACT

Acifluorfen, a selective herbicide from the diphenyl ether family, targets broad leaf weeds. Diphenyl ether inhibits chlorophyll production in green plants by inhibiting protoporphyrinogen oxidase (PPO), causing cellular damage. Despite its known impacts on plants, the influence of acifluorfen on zebrafish embryo development remains unclear. In this study, we explored the LC50 of acifluorfen in early-stage wild-type zebrafish, determining it to be 54.99 mg/L. Subsequent examinations revealed morphological changes in zebrafish, including reduced body length. Using the cmlc2:dsRED transgenic model, we observed heart dysfunction in acifluorfen-exposed zebrafish, marked by an enlarged heart area, edema, and decreased heart rate. In response to dose-dependent acifluorfen exposure, the inhibition of angiogenesis in the brain was observed in transgenic zebrafish models (fli1a:eGFP). Organ malformations, specifically in the liver and pancreas, were noted, in lfabp:dsRED;elastase:eGFP transgenic models, indicating reduced organ size in acifluorfen-exposed zebrafish. Furthermore, acifluorfen heightened the expression of apoptosis-related genes (casp8, casp9, and tp53) in zebrafish embryos. We then determined whether acifluorfen affected the viability of zebrafish liver (ZFL) cells based on its effects on liver development in vivo. The results indicated that the proliferation of ZFL cells decreased significantly in a dose-dependent manner. Additionally, acifluorfen-treated ZFL cells exhibited a slight increase in apoptotic cells stained with annexin V and propidium iodide. In summary, these findings establish a baseline concentration for acifluorfen's effects on aquatic ecosystems and non-target organisms.


Subject(s)
Animals, Genetically Modified , Embryo, Nonmammalian , Herbicides , Zebrafish , Animals , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Herbicides/toxicity , Apoptosis/drug effects , Embryonic Development/drug effects , Water Pollutants, Chemical/toxicity
20.
Article in English | MEDLINE | ID: mdl-38583696

ABSTRACT

Existing evidence shows that currently used pesticides pose toxicological risks to exposed wildlife. Chemically, bifenox belongs to diphenyl ethers, a well-known group of herbicides. Its mechanism of action primarily involves inducing lipid peroxidation and blocking protoporphyrinogen oxidases. Toxicity of diphenyl ether herbicides has been elucidated in animal cells; however, in vivo toxicological evaluations of bifenox are required to determine its unexpected effects. This study aimed to determine the negative effects of bifenox, and its effects on higher eukaryotes. We found that early stages of zebrafish embryo exposed to bifenox demonstrated increased mortality and physiological defects, based on the LC50 value. Bifenox severely inhibited blood vessel growth by reducing key elements of complex connectivity; fluorescently tagged transgenic lines (fli1a:EGFP) showed morphological changes. Additionally, transgenic lines that selectively identified hepatocytes (fabp10a:DsRed) showed reduced fluorescence, indicating that bifenox may inhibit liver development. To evaluate the level of oxidative stress, we used 2',7'-dichlorofluorescein diacetate (DCFH-DA) probes in zebrafish embryos to identify the underlying mechanisms causing developmental damage. Our findings demonstrate that exposure to bifenox causes abnormalities in the hepatic and cardiovascular systems during zebrafish embryogenesis. Therefore, this study provides new information for the evaluation of toxicological risks of bifenox in vertebrates.


Subject(s)
Embryo, Nonmammalian , Reactive Oxygen Species , Signal Transduction , Zebrafish , Animals , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Animals, Genetically Modified , Herbicides/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/embryology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Halogenated Diphenyl Ethers/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...