Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.031
Filter
1.
Water Sci Technol ; 89(10): 2839-2850, 2024 May.
Article in English | MEDLINE | ID: mdl-38822618

ABSTRACT

Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Wastewater , Water Pollutants, Chemical , Zeolites , Zeolites/chemistry , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Filtration/methods , Water Purification/methods , Waste Disposal, Fluid/methods , Adsorption , Drug Resistance, Microbial/genetics , Genes, Bacterial , Drug Resistance, Bacterial/genetics
2.
J Environ Sci (China) ; 145: 128-138, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844313

ABSTRACT

Zeolites are a promising support for Pd catalysts in lean methane (CH4) combustion. Herein, three types of zeolites (H-MOR, H-ZSM-5 and H-Y) were selected to estimate their structural effects and deactivation mechanisms in CH4 combustion. We show that variations in zeolite structure and surface acidity led to distinct changes in Pd states. Pd/H-MOR with external high-dispersing Pd nanoparticles exhibited the best apparent activity, with activation energy (Ea) at 73 kJ/mol, while Pd/H-ZSM-5 displayed the highest turnover frequency (TOF) at 19.6 × 10-3 sec-1, presumably owing to its large particles with more step sites providing active sites in one particle for CH4 activation. Pd/H-Y with dispersed PdO within pore channels and/or Pd2+ ions on ion-exchange sites yielded the lowest apparent activity and TOF. Furthermore, Pd/H-MOR and Pd/H-ZSM-5 were both stable under a dry condition, but introducing 3 vol.% H2O caused the CH4 conversion rate on Pd/H-MOR drop from 100% to 63% and that on Pd/H-ZSM-5 decreased remarkably from 82% to 36%. The former was shown to originate from zeolite structural dealumination, and the latter principally owed to Pd aggregation and the loss of active PdO.


Subject(s)
Methane , Palladium , Zeolites , Zeolites/chemistry , Methane/chemistry , Catalysis , Palladium/chemistry , Models, Chemical
3.
J Sep Sci ; 47(11): e2300915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847294

ABSTRACT

In this work, core-shell material with a special structure was designed and applied in solid-phase extraction (SPE) for non-steroidal anti-inflammatory drugs (NSAIDs) combined with high-performance liquid chromatography. Based on the advantages of core-shell ZIF-8@ZIF-67 (Zeolite imidazole ester framework materials [ZIFs]), effective derivatization treatment was carried out to partially vulcanize the original ZIFs, resulting in a special and new double-core-shell structural material CoS/ZIF-67/ZnS/ZIF-8 (ZIFs@ZnS@CoS) with porous surface and center hollow. The multiple forces caused by the rich chemical structure, the large specific surface area caused by the special pore structure, and the effective protection of the ZIFs core by sulfide shell make the designed material have higher extraction efficiency and longer service life, compared with ZIF-8@ZIF-67 and ZIF-8. At the same time, the established analytical method for non-steroidal drugs had a high recovery rate (98.93%-102.10%), low detection limit (0.11-0.27 µg/L), and wide linear range (1-200 µg/L) within a good correlation coefficient R2 (0.9978-0.9993). Satisfactory results were also obtained from the extraction of NSAIDs from the Yellow River water samples. These results indicate that the designed double-core-shell structure material can effectively exert its structural advantages and become a promising extraction material.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Solid Phase Extraction , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid , Surface Properties , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/analysis , Particle Size , Metal-Organic Frameworks/chemistry , Molecular Structure , Porosity , Zeolites/chemistry , Adsorption , Imidazoles/chemistry
4.
Mikrochim Acta ; 191(6): 306, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713247

ABSTRACT

For early diabetes identification and management, the progression of an uncomplicated and exceedingly responsive glucose testing technology is crucial. In this study, we present a new sensor incorporating a composite of metal organic framework (MOF) based on cobalt, coated with boronic acid to facilitate selective glucose binding. Additionally, we successfully employed a highly sensitive electro-optical immunosensor for the detection of subtle changes in concentration of the diabetes biomarker glycated haemoglobin (HbA1c), using zeolitic imidazolate framework-67 (ZIF-67) coated with polydopamine which further modified with boronic acid. Utilizing the polymerization characteristics of dopamine and the NH2 groups, a bonding structure is formed between ZIF-67 and 4-carboxyphenylboronic acid. ZIF-67 composite served as an effective substrate for immobilising 4-carboxyphenylboronic acid binding agent, ensuring precise and highly selective glucose identification. The sensing response was evaluated through both electrochemical and optical methods, confirming its efficacy. Under optimized experimental condition, the ZIF-67 based sensor demonstrated a broad detection range of 50-500 mg dL-1, a low limit of detection (LOD) of 9.87 mg dL-1 and a high correlation coefficient of 0.98. Furthermore, the 4-carboxyphenylboronic acid-conjugated ZIF-67-based sensor platform exhibited remarkable sensitivity and selectivity in optical-based detection for glycated haemoglobin within the clinical range of 4.7-11.3%, achieving a LOD of 3.7%. These findings highlight the potential of the 4-carboxyphenylboronic acid-conjugated ZIF-67-based electro-optical sensor as a highly sensitive platform for diabetes detection.


Subject(s)
Blood Glucose , Boronic Acids , Diabetes Mellitus , Glycated Hemoglobin , Imidazoles , Limit of Detection , Metal-Organic Frameworks , Zeolites , Boronic Acids/chemistry , Zeolites/chemistry , Metal-Organic Frameworks/chemistry , Imidazoles/chemistry , Humans , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Nanoparticles/chemistry , Biosensing Techniques/methods , Indoles/chemistry , Polymers/chemistry , Electrochemical Techniques/methods
5.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772662

ABSTRACT

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Indoles/chemistry , Catalysis , Limit of Detection , Nanostructures/chemistry , Nanocomposites/chemistry , Imidazoles , Polymers , Zeolites
6.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712727

ABSTRACT

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Subject(s)
Imidazoles , Trypsin , Zeolites , Trypsin/chemistry , Trypsin/metabolism , Zeolites/chemistry , Imidazoles/chemistry , Molecular Weight , Acrylic Resins/chemistry , Porosity , Proteins/chemistry
7.
Plant Physiol Biochem ; 211: 108694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714131

ABSTRACT

Using natural clinoptilolite (NCP) as a carrier and alginate (Alg)-calcium as an active species, the porous silicon calcium alginate nanocomposite (Alg-Ca-NCP) was successfully fabricated via adsorption-covalence-hydrogen bond. Its structural features and physicochemical properties were detailed investigated by various characterizations. The results indicated that Alg-Ca-NCP presented the disordered lamellar structures with approximately uniform particles in size of 300-500 nm. Specially, their surface fractal evolutions between the irregular roughness and dense structures were demonstrated via the SAXS patterns. The results elucidated that the abundant micropores of NCP were beneficial for unrestricted diffusing of Alg-Ca, which was conducive to facilitate a higher loading and sustainable releasing. The Ca content of leaf mustard treated with Alg-Ca-NCP-0.5 was 484.5 mg/100g on the 21st day, higher than that by water (CK) and CaCl2 solution treatments, respectively. Meanwhile, the prepared Alg-Ca-NCPs presented the obvious anti-aging effects on peroxidase drought stress of mustard leaves. These demonstrations provided a simple and effective method to synthesize Alg-Ca-NCPs as delivery nanocomposites, which is useful to improve the weak absorption and low utilization of calcium alginate by plants.


Subject(s)
Alginates , Mustard Plant , Zeolites , Alginates/chemistry , Alginates/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Mustard Plant/metabolism , Mustard Plant/drug effects , Mustard Plant/chemistry , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Porosity , Brassica/metabolism , Brassica/drug effects , Brassica/growth & development , Glucuronic Acid/chemistry , Nanocomposites/chemistry , X-Ray Diffraction , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism
8.
Food Chem ; 452: 139481, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723565

ABSTRACT

As a hypertoxic natural toxin, the risk of Microcystin-leucine-arginine (MC-LR) residues in Bellamya aeruginosa deserves more attention. Herein, employing the conventional thin-layer chromatography (TLC) technology and a novel surface-enhanced Raman scattering (SERS) substrate, a TLC-SERS chip was fabricated for the purification and quantitative detection of MC-LR in complex samples. The substrate exhibited excellent SERS performance with an enhancement factor of 6.6 × 107, a low detection limit of 2.27 × 10-9 mM for MC-LR, excellent uniformity and reproducibility, as well as a wide linear range. With the application of TLC, the MC-LR was efficiently purified and the concentration was increased to >3 times. Ultimately, recovery rates fluctuated between 93.28% and 101.66% were obtained from the TLC-SERS chip. On balance, the TLC-SERS chip has a robust capacity for achieving rapid and stable quantitative detection of MC-LR, which promises to improve the efficiency of food safety monitoring.


Subject(s)
Marine Toxins , Microcystins , Silver , Spectrum Analysis, Raman , Microcystins/analysis , Spectrum Analysis, Raman/methods , Marine Toxins/analysis , Chromatography, Thin Layer/methods , Silver/chemistry , Food Contamination/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Imidazoles , Zeolites
9.
J Chromatogr A ; 1727: 464988, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38749348

ABSTRACT

In this research, a novel magnetic nanocomposite (Fe3O4@Zn/Al-LABSA-LDH/ZIF-8) was synthesized using Fe3O4 as the magnetic core, layered double hydroxide (LDH) with linear alkylbenzene sulfonic acid (LABSA) intercalation and zeolitic imidazolate framework-8 (ZIF-8) as the shell. Benefiting from the intercalation of LABSA into LDH combined with ZIF-8, the multiple interactions, including π-π stacking, hydrogen bonding, and electrostatic interactions, conferred high selectivity and good extraction capability to the material towards heterocyclic aromatic amines (HAAs). Fe3O4@Zn/Al-LABSA-LDH@ZIF-8 was used as an adsorbent for magnetic solid-phase extraction (MSPE) to enrich HAAs in thermally processed meat samples, followed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection. The method exhibited a low detection limit (0.021-0.221 ng/g), good linearity (R2 ≥ 0.9999), high precision (RSD < 7.2 %), and satisfactory sample recovery (89.7 % -107.5 %). This research provides a promising approach for developing novel adsorbents in sample preparation and improving analytical performance.


Subject(s)
Amines , Limit of Detection , Nanocomposites , Solid Phase Extraction , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Amines/analysis , Amines/chemistry , Nanocomposites/chemistry , Solid Phase Extraction/methods , Imidazoles/chemistry , Heterocyclic Compounds/analysis , Heterocyclic Compounds/chemistry , Hydroxides/chemistry , Zeolites/chemistry , Meat/analysis , Metal-Organic Frameworks/chemistry , Adsorption , Food Contamination/analysis , Liquid Chromatography-Mass Spectrometry
10.
Bioresour Technol ; 402: 130805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718905

ABSTRACT

Catalytic transfer hydrogenation (CTH), that employs protic solvents as hydrogen sources to alleviate the use of molecular hydrogen H2, has gained great attention. This work, reports multifunctional, metallic Cu nanoparticles supported ZIF-8 material for CTH of furfural to a highly valued fuel additive, 2-methylfuran (2-MF) using 2-propanol. Of all as-synthesized xCu(yM)/ZIF-8 catalysts with varied NaBH4 concentration (yM) and Cu loading (x), 11Cu(1.5 M)/ZIF-8 exhibited higher catalytic activity with > 99 % FAL conversion and 93.9 % 2-MF selectivity. This is ascribed to its high specific surface area, and existence of optimum amount of Lewis acid-base sites along with Cu0 species, which are responsible for hydrogenation of furfural to furfuryl alcohol and subsequent hydrogenolysis to produce 2-MF. The present work reports a highly efficient and stable, metal-MOF hybrid material for CTH of FAL to 2-MF, which is one among the best reports available in literature, therewith suggests a promising approach for bio-oil upgradation.


Subject(s)
Copper , Furaldehyde , Furans , Metal Nanoparticles , Zeolites , Furans/chemistry , Catalysis , Hydrogenation , Copper/chemistry , Furaldehyde/chemistry , Furaldehyde/analogs & derivatives , Zeolites/chemistry , Metal Nanoparticles/chemistry , Hydrogen/chemistry
11.
J Environ Sci (China) ; 144: 15-25, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802227

ABSTRACT

Zeolite imidazole frameworks (ZIFs), a class of the metal organic framework, have been extensively studied in environmental applications. However, their environmental fate and potential ecological impact on plants remain unknown. Here, we investigated the phytotoxicity, transformation, and bioaccumulation processes of two typical ZIFs (ZIF-8 and ZIF-67) in rice (Oryza sativa L.) under hydroponic conditions. ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2% and 27.5%, 53.5% and 37.5%, respectively. The scanning electron microscopy (SEM) imaging combined with X-ray diffraction (XRD) patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time. The fluorescein isothiocyanate (FITC) labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice. The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root, while they cannot be transported to culms and leaves. Even so, the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145% and 1259%, 145% and 259%, respectively, compared with the control groups. These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent, the metal ions and their ligands, and they were internalized by rice root and increased the Co and Zn contents of shoots. This study reported the transformation of ZIFs and their biological effectiveness in rice, highlighting the potential environmental hazards and risks of ZIFs to crop plants.


Subject(s)
Bioaccumulation , Imidazoles , Oryza , Seedlings , Soil Pollutants , Zeolites , Oryza/drug effects , Oryza/metabolism , Imidazoles/toxicity , Seedlings/drug effects , Seedlings/metabolism , Soil Pollutants/toxicity , Metal-Organic Frameworks
12.
Colloids Surf B Biointerfaces ; 239: 113963, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759294

ABSTRACT

Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.


Subject(s)
Dimethylpolysiloxanes , Metal Nanoparticles , Prostate-Specific Antigen , Silver , Spectrum Analysis, Raman , Silver/chemistry , Spectrum Analysis, Raman/methods , Immunoassay/methods , Prostate-Specific Antigen/analysis , Metal Nanoparticles/chemistry , Dimethylpolysiloxanes/chemistry , Humans , Gold/chemistry , Biomimetic Materials/chemistry , Surface Properties , Limit of Detection , Nanotubes/chemistry , Male , Particle Size , Imidazoles , Zeolites
13.
ACS Appl Mater Interfaces ; 16(22): 29305-29313, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38798175

ABSTRACT

Although agrochemical practices can enhance agricultural productivity, their intensive application has resulted in the deterioration of ecosystems. Therefore, it is necessary to develop more efficient and less toxic methods against pests and infections while improving crop productivity. Moving toward sustainable development, in this work, we originally described the preparation of a composite (ZIF-8@HA) consisting of the coating of zeolitic-like metal-organic framework (MOF) ZIF-8 (based on Zn, an essential micronutrient in plants with antibacterial, antifungal, and antifouling properties) with hydroxyapatite (HA) nanoparticles (i.e., nanofertilizer). The interaction between the HA and ZIF-8 has been characterized through a combination of techniques, such as microscopic techniques, where the presence of a HA coating is demonstrated; or by analysis of the surface charge with a dramatic change in the Z-potential (from +18.7 ± 0.8 to -27.6 ± 0.7 mV for ZIF-8 and ZIF-8@HA, respectively). Interestingly, the interaction of HA with ZIF-8 delays the MOF degradation (from 4 h for pristine ZIF-8 to 168 h for HA-coated material), providing a slower and gradual release of zinc. After a comprehensive characterization, the potential combined fertilizer and bactericidal effect of ZIF-8@HA was investigated in wheat (Triticum aestivum) seeds and Pseudomonas syringae (Ps). ZIF-8@HA (7.3 ppm) demonstrated a great fertilizer effect, increasing shoot (9.4 %) and root length (27.1 %) of wheat seeds after 11 days at 25 °C under dark conditions, improving the results obtained with HA, ZIF-8, or ZnSO4 or even physically mixed constituents (HA + ZIF-8). It was also effective in the growth inhibition (>80 % of growth inhibition) of Ps, a vegetal pathogen causing considerable crop decline. Therefore, this work demonstrates the potential of MOF@HA composites and paves the way as a promising agrochemical with improved fertilizer and antibacterial properties.


Subject(s)
Agrochemicals , Durapatite , Metal-Organic Frameworks , Durapatite/chemistry , Durapatite/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Agrochemicals/chemistry , Agrochemicals/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Zeolites/chemistry , Zeolites/pharmacology , Triticum/chemistry , Triticum/drug effects , Imidazoles
14.
Environ Pollut ; 352: 124082, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697246

ABSTRACT

Antimony (Sb) contamination in certain areas caused by activities such as antimony mining and smelting poses significant risks to human health and ecosystems. In this study, a stable composite material consisting of natural zeolite-supported nanoscale zero-valent iron (Z-ZVI) was successfully prepared. The immobilization effect of Z-ZVI on Sb in contaminated soil was investigated. Experimental results showed that Z-ZVI exhibited superior performance compared to pure nano zero-valent iron (nZVI) in terms of stability, with a lower zeta potential (-25.16 mV) at a pH of 7 and a higher specific surface area (54.54 m2/g). It can be easily applied and dispersed in contaminated soils. Additionally, Z-ZVI demonstrated a more abundant porous structure. After 60 days of treatment with 3% Z-ZVI, the leaching concentration of Sb in the contaminated soil decreased from 1.32 mg/L to 0.31 mg/L (a reduction of 76%), and the concentration of available Sb species decreased from 19.84 mg/kg to 0.71 mg/kg, achieving a fixation efficiency of up to 90%. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis confirmed the effective immobilization of Sb in the soil through reduction of antimonate to antimonite, precipitation, and adsorption processes facilitated by Z-ZVI. Moreover, the addition of Z-ZVI effectively reduced the bioavailability of Sb in the contaminated soil, thereby mitigating its toxicity to earthworms. In conclusion, Z-ZVI can be utilized as a promising material for the safe remediation and antimony and other heavy metal-contaminated soils.


Subject(s)
Antimony , Iron , Soil Pollutants , Soil , Zeolites , Antimony/chemistry , Soil Pollutants/chemistry , Zeolites/chemistry , Iron/chemistry , Soil/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Animals
15.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38763124

ABSTRACT

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Subject(s)
Anti-Bacterial Agents , Metal-Organic Frameworks , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photochemotherapy/methods , Animals , Mice , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Biofilms/drug effects , Photothermal Therapy , Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Microbial Sensitivity Tests , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Tin Compounds/chemistry , Tin Compounds/pharmacology , Zeolites/chemistry , Zeolites/pharmacology
16.
Anal Chem ; 96(22): 9228-9235, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38779801

ABSTRACT

Open-tubular immobilized enzyme microreactors (OT-IMERs) are some of the most widely used enzyme reaction devices due to the advantages of simple preparation and fast sample processing. However, the traditional approaches for OT-IMERs preparation had some defects such as limited enzyme loading amount, susceptibility to complex sample interference, and less stability. Here, we report a strategy for the preparation of highly active and stable OT-IMERs, in which the single-stranded DNA-enzyme composites were immobilized in capillaries and then encapsulated in situ in the capillaries via zeolitic imidazolate frameworks (ZIF-L). The phosphate groups of the DNA adjusted the surface potential of the enzyme to negative values, which could attract cations, such as Zn2+, to promote the formation of ZIF-L for enzyme encapsulation. Using chymotrypsin (ChT) as a model enzyme, the prepared ChT@ZIF-L-IMER has higher activity and better affinity than the free enzyme and ChT-IMER. Moreover, the thermal stability, pH stability, and organic solvent stability of ChT@ZIF-L-IMER were much higher than those of free enzyme and ChT-IMER. Furthermore, the activity of ChT@ZIF-L-IMER was much higher than that of ChT-IMER after ten consecutive reactions. To demonstrate the versatility of this preparation method, we replaced ChT with glucose oxidase (GOx). The stability of GOx@ZIF-L-IMER was also experimentally demonstrated to be superior to that of GOx and GOx-IMER. Finally, ChT@ZIF-L-IMER was used for proteolytic digestion analysis. The results showed that ChT@ZIF-L-IMER had a short digestion time and high digestive efficiency compared with the free enzyme. The present study broadened the synthesis method of OT-IMERs, effectively integrating the advantages of metal-organic frameworks and IMER, and the prepared OT-IMERs significantly improved enzyme stability. All of the results indicated that the IMER prepared by this method had a broad application prospect in capillary electrophoresis-based high-performance enzyme analysis.


Subject(s)
Chymotrypsin , Enzyme Stability , Enzymes, Immobilized , Imidazoles , Zeolites , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Zeolites/chemistry , Imidazoles/chemistry , Chymotrypsin/metabolism , Chymotrypsin/chemistry , Metal-Organic Frameworks/chemistry , Hydrogen-Ion Concentration
17.
Chemosphere ; 359: 142294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734247

ABSTRACT

Development of efficient catalysts for non-thermal plasma (NTP) assisted catalysis to mitigate the formation of harmful by-products is a significant challenge in the degradation of chlorinated volatile organic compounds (Cl-VOCs). In this study, catalytically active Pt nanoparticles supported on non-porous SiO2 and silicalite-1 zeolites (S1) with different pore structure were comparatively investigated for catalytic chlorobenzene degradation under NTP condition. It was shown that the pore structure could significantly impact the metal size and metal dispersion rate. Pt supported on modified S1 hierarchical meso-micro-porous silicalite-1 (Pt/D-S1) exhibited the smallest particle size (∼6.19 nm) and the highest dispersion rate (∼1.87). Additionally, Pt/D-S1 demonstrated superior catalytic performance compared to the other catalysts, achieving the highest chlorobenzene conversion and COx selectivity at about 80% and 75%, respectively. Furthermore, the pore structure also affected the formation of by-products according to the findings from GC-MS analysis. Pt/SiO2 generated a total of 18 different species of organic compounds, whereas only 12 species of organic by-products were identified in the Pt/D-S1 system (e.g. polychlorinated compounds like 3,4 dichlorophenol were exclusively identified in Pt/SiO2). Moreover, dioxin-like polychlorinated biphenyl and other chlorinated organic compounds, which have potential to form highly toxic dioxins, were detected in the catalysts. HRGC-HRMS confirmed and quantified the 17 different dioxin/furans formed on Pt/SiO2 (25,100 ng TEQ kg-1), Pt/S1 (515 ng TEQ kg-1) and Pt/D-S1 (367 ng TEQ kg-1). The correlation between synthesis-structure-performance in this study provides insights into the design of catalysts for deep oxidation of Cl-VOCs in NTP system.


Subject(s)
Chlorobenzenes , Platinum , Polychlorinated Dibenzodioxins , Silicon Dioxide , Chlorobenzenes/chemistry , Catalysis , Platinum/chemistry , Silicon Dioxide/chemistry , Polychlorinated Dibenzodioxins/chemistry , Plasma Gases/chemistry , Zeolites/chemistry , Volatile Organic Compounds/chemistry , Metal Nanoparticles/chemistry , Benzofurans/chemistry
18.
Sci Rep ; 14(1): 9983, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693143

ABSTRACT

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Subject(s)
Doxorubicin , Hydrogels , Metal-Organic Frameworks , Methacrylates , Nanoparticles , Wound Healing , Animals , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Wound Healing/drug effects , Nanoparticles/chemistry , Hydrogels/chemistry , Rats , Humans , Reactive Oxygen Species/metabolism , Gelatin/chemistry , Cerium/chemistry , Cerium/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Cell Line, Tumor , Male , Imidazoles/chemistry , Imidazoles/administration & dosage , Imidazoles/pharmacology , Rats, Sprague-Dawley
19.
ACS Appl Bio Mater ; 7(5): 3375-3387, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38693867

ABSTRACT

Encapsulation of natural polymer pectin (Pec) into a zeolitic imidazolate framework-12 (ZIF-12) matrix via a simple chemical method toward anticancer agent gallic acid (GA) detection is reported in this work. GA, a natural phenol found in many food sources, has gained attention by its biological effects on the human body, such as an antioxidant and anti-inflammatory. Therefore, it is crucial to accurately and rapidly determine the GA level in humans. The encapsulation of Pec inside the ZIF-12 has been successfully confirmed from the physiochemical studies such as XRD, Raman, FTIR, and XPS spectroscopy along with morphological FESEM, BET, and HRTEM characterization. Under optimized conditions, the Pec@ZIF-12 composite exhibits wide linear range of 20 nM-250 µM with a detection limit of 2.2 nM; also, it showed excellent selectivity, stability, and reproducibility. Furthermore, the real sample analysis of food samples including tea, coffee, grape, and pomegranate samples shows exceptional recovery percentage in an unspiked manner. So far, there is little literature for encapsulating proteins, enzymes, metals, etc., that have been reported; here, we successfully encapsulated a natural polymer Pec inside the ZIF-12 cage. This encapsulation significantly enhanced the composite electrochemical performance, which could be seen from the overall results. All of these strongly suggest that the proposed Pec@ZIF-12 composite could be used for miniaturized device fabrication for the evaluation of GA in both home and industrial applications.


Subject(s)
Antineoplastic Agents , Electrochemical Techniques , Imidazoles , Zeolites , Zeolites/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Imidazoles/chemistry , Materials Testing , Gallic Acid/chemistry , Particle Size , Biocompatible Materials/chemistry , Polymers/chemistry , Pectins/chemistry , Metal-Organic Frameworks/chemistry , Humans
20.
Int J Nanomedicine ; 19: 4253-4261, 2024.
Article in English | MEDLINE | ID: mdl-38766662

ABSTRACT

Purpose: Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods: Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results: The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion: This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.


Subject(s)
Anti-Bacterial Agents , Carbon , Escherichia coli , Silver , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Silver/chemistry , Silver/pharmacology , Porosity , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Carbon/chemistry , Carbon/pharmacology , Infrared Rays , Microbial Sensitivity Tests , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Zeolites/chemistry , Zeolites/pharmacology , Imidazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...