Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 904
Filter
1.
PLoS One ; 19(5): e0302684, 2024.
Article in English | MEDLINE | ID: mdl-38722858

ABSTRACT

BACKGROUND: In most cases, Zika virus (ZIKV) causes a self-limited acute illness in adults, characterized by mild clinical symptoms that resolve within a few days. Immune responses, both innate and adaptive, play a central role in controlling and eliminating virus-infected cells during the early stages of infection. AIM: To test the hypothesis that circulating T cells exhibit phenotypic and functional activation characteristics during the viremic phase of ZIKV infection. METHODS: A comprehensive analysis using mass cytometry was performed on peripheral blood mononuclear cells obtained from patients with acute ZIKV infection (as confirmed by RT-PCR) and compared with that from healthy donors (HD). The frequency of IFN-γ-producing T cells in response to peptide pools covering immunogenic regions of structural and nonstructural ZIKV proteins was quantified using an ELISpot assay. RESULTS: Circulating CD4+ and CD8+ T lymphocytes from ZIKV-infected patients expressed higher levels of IFN-γ and pSTAT-5, as well as cell surface markers associated with proliferation (Ki-67), activation ((HLA-DR, CD38) or exhaustion (PD1 and CTLA-4), compared to those from HD. Activation of CD4+ and CD8+ memory T cell subsets, including Transitional Memory T Cells (TTM), Effector Memory T cells (TEM), and Effector Memory T cells Re-expressing CD45RA (TEMRA), was prominent among CD4+ T cell subset of ZIKV-infected patients and was associated with increased levels of IFN-γ, pSTAT-5, Ki-67, CTLA-4, and PD1, as compared to HD. Additionally, approximately 30% of ZIKV-infected patients exhibited a T cell response primarily directed against the ZIKV NS5 protein. CONCLUSION: Circulating T lymphocytes spontaneously produce IFN-γ and express elevated levels of pSTAT-5 during the early phase of ZIKV infection whereas recognition of ZIKV antigen results in the generation of virus-specific IFN-γ-producing T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/immunology , Zika Virus Infection/epidemiology , Adult , Zika Virus/immunology , Female , Male , Interferon-gamma/metabolism , Interferon-gamma/immunology , Brazil/epidemiology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Middle Aged , Young Adult , Epidemics , Lymphocyte Activation/immunology , T-Lymphocytes/immunology
2.
Vaccine ; 42(17): 3674-3683, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38749821

ABSTRACT

The Zika virus (ZIKV) is considered a public health problem worldwide due to its association with the development of microcephaly and the Guillain-Barré syndrome. Currently, there is no specific treatment or vaccine approved to combat this disease, and thus, developing safe and effective vaccines is a relevant goal. In this study, a multi-epitope protein called rpZDIII was designed based on a series of ZIKV antigenic sequences, a bacterial carrier, and linkers. The analysis of the predicted 3D structure of the rpZDIII chimeric antigen was performed on the AlphaFold 2 server, and it was produced in E. coli and purified from inclusion bodies, followed by solubilization and refolding processes. The yield achieved for rpZDIII was 11 mg/L in terms of pure soluble recombinant protein per liter of fermentation. rpZDIII was deemed immunogenic since it induced serum IgG and IgM responses in mice upon subcutaneous immunization in a three-dose scheme. Moreover, sera from mice immunized with rpZDIII showed neutralizing activity against ZIKV. Therefore, this study reveals rpZDIII as a promising immunogen for the development of a rationally designed multi-epitope vaccine against ZIKV, and completion of its preclinical evaluation is guaranteed.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral , Zika Virus Infection , Zika Virus , Animals , Zika Virus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Antigens, Viral/immunology , Antigens, Viral/genetics , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Epitopes/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/blood , Mice, Inbred BALB C
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 447-454, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790101

ABSTRACT

Objective To prepare monoclonal antibodies against the envelope protein extracellular domain (Eecto) of Zika virus (ZIKV) in mice. Methods A prokaryotic expression plasmid, pET28a-ZIKV-Eecto of ZIKV Eecto, was constructed, transformed into Escherichia coli BL21 and induced by isopropyl ß-D-thiogalactoside (IPTG). The recombinant Eecto protein was expressed in the form of inclusion bodies, and purified proteins were obtained through denaturation, renaturation and ultrafiltration. After three rounds of immunization with the Eecto protein, the serum of BALB/c mice was obtained and the titer of polyclonal antibodies in serum was determined. The reactivity of polyclonal antibodies was analyzed with Western blotting and immunofluorescence assay in HEK293T cells expressing the ZIKV prME. Spleen cells from mice with higher antibody titers were prepared and fused with SP2/0 myeloma cells. The hybridoma cells secreting antibodies were screened through the limited dilution method, and the ascites containing antibody were harvested for titer measurement and subclass analysis. The Eecto from the envelope proteins of Japanese encephalitis virus (JEV), Yellow fever virus (YFV), Dengue virus (DENV1-4), and Tick borne encephalitis virus (TBEV) were coated and used to analyze the cross-reactivity of ZIKV monoclonal antibodies by ELISA. Further specificity analysis was conducted on antibodies with high titers and strong specificity. Results The plasmid pET28a-ZIKV-Eecto was successfully constructed. The purified Eecto protein was obtained with good immunogenicity. Four monoclonal antibodies were prepared and screened, namely 1D6, 4F11, 4H7, and 4F8. Among them, 1D6, 4H7, and 4F8 are IgG (K) type antibodies, and 4F11 is an IgM (K) antibody. The ascitic fluid titer of 1D6 was higher than 1:108. Antibodies 1D6 and 4H7 are ZIKV-specific and showed no cross-reactivity with other Flaviviruses. Conclusion The mice monoclonal antibodies against ZIKV-Eecto are produced successfully, which will provide experimental materials for the establishment of ZIKV detection methods and the study of its pathogenesis.


Subject(s)
Antibodies, Monoclonal , Mice, Inbred BALB C , Viral Envelope Proteins , Zika Virus , Animals , Zika Virus/immunology , Zika Virus/genetics , Antibodies, Monoclonal/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Mice , Humans , HEK293 Cells , Female , Antibodies, Viral/immunology , Protein Domains/immunology , Enzyme-Linked Immunosorbent Assay
4.
Viruses ; 16(5)2024 05 19.
Article in English | MEDLINE | ID: mdl-38793688

ABSTRACT

Arboviral diseases are serious threats to global health with increasing prevalence and potentially severe complications. Significant arthropod-borne viruses are the dengue viruses (DENV 1-4), the Zika virus (ZIKV), and the chikungunya virus (CHIKV). Among the areas most affected is the South Pacific Region (SPR). Here, arboviruses not only cause a high local burden of disease, but the region has also proven to contribute to their global spread. Outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states of Vanuatu and the Cook Islands were tested for anti-DENV- and anti-ZIKV-specific antibodies (IgG) using enzyme-linked immunosorbent assays (ELISA). ELISA test results showed 89% of all test sera from the Cook Islands and 85% of the Vanuatu samples to be positive for anti-DENV-specific antibodies. Anti-ZIKV antibodies were identified in 66% and 52%, respectively, of the test populations. Statistically significant differences in standardized immunity levels were found only at the intranational level. Our results show that in both the Cook Islands and Vanuatu, residents were exposed to significant Flavivirus transmission. Compared to other seroprevalence studies, the marked difference between ZIKV immunity levels and previously published CHIKV seroprevalence rates in our study populations is surprising. We propose the timing of ZIKV and CHIKV emergence in relation to recurrent DENV outbreaks and the impact of seasonality as explanatory external factors for this observation. Our data add to the knowledge of arboviral epidemics in the SPR and contribute to a better understanding of virus spread, including external conditions with potential influence on outbreak dynamics. These data may support preventive and rapid response measures in the affected areas, travel-related risk assessment, and infection identification in locals and returning travelers.


Subject(s)
Antibodies, Viral , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/epidemiology , Zika Virus Infection/blood , Zika Virus Infection/immunology , Zika Virus Infection/virology , Seroepidemiologic Studies , Dengue Virus/immunology , Zika Virus/immunology , Vanuatu/epidemiology , Dengue/epidemiology , Dengue/immunology , Dengue/blood , Dengue/virology , Polynesia/epidemiology , Antibodies, Viral/blood , Adult , Female , Adolescent , Young Adult , Male , Middle Aged , Aged , Child , Enzyme-Linked Immunosorbent Assay , Child, Preschool , Immunoglobulin G/blood , Infant
5.
Proc Natl Acad Sci U S A ; 121(21): e2312755121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743628

ABSTRACT

Antigenic similarities between Zika virus (ZIKV) and other flaviviruses pose challenges to the development of virus-specific diagnostic tools and effective vaccines. Starting with a DNA-encoded one-bead-one-compound combinatorial library of 508,032 synthetic, non-natural oligomers, we selected and characterized small molecules that mimic ZIKV epitopes. High-throughput fluorescence-activated cell sorter-based bead screening was used to select molecules that bound IgG from ZIKV-immune but not from dengue-immune sera. Deep sequencing of the DNA from the "Zika-only" beads identified 40 candidate molecular structures. A lead candidate small molecule "CZV1-1" was selected that correctly identifies serum specimens from Zika-experienced patients with good sensitivity and specificity (85.3% and 98.4%, respectively). Binding competition studies of purified anti-CZV1-1 IgG against known ZIKV-specific monoclonal antibodies (mAbs) showed that CZV1-1 mimics a nonlinear, neutralizing conformational epitope in the domain III of the ZIKV envelope. Purified anti-CZV1-1 IgG neutralized infection of ZIKV in cell cultures with potencies comparable to highly specific ZIKV-neutralizing mAbs. This study demonstrates an innovative approach for identification of synthetic non-natural molecular mimics of conformational virus epitopes. Such molecular mimics may have value in the development of accurate diagnostic assays for Zika, as well as for other viruses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Zika Virus Infection , Zika Virus , Zika Virus/immunology , Epitopes/immunology , Humans , Zika Virus Infection/immunology , Zika Virus Infection/virology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Antibodies, Monoclonal/immunology , Molecular Mimicry/immunology
6.
Sci Transl Med ; 16(749): eadn2199, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809964

ABSTRACT

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.


Subject(s)
Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies
7.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675911

ABSTRACT

Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose, but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days post-infection. Innate immune responses varied significantly between age groups. Robust type I interferon and inflammasome responses were measured in older chickens, while limited innate immune activation was observed in younger chicks. Signal transducer and activator of transcription 2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance of the virus in older chickens coincided with an effective innate immune response, highlighting age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.


Subject(s)
Chickens , Immunity, Innate , Poultry Diseases , Zika Virus Infection , Zika Virus , Animals , Chickens/virology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Disease Susceptibility , Poultry Diseases/virology , Poultry Diseases/immunology , Age Factors , Antibodies, Viral/blood , RNA, Viral/genetics
8.
PLoS Negl Trop Dis ; 18(4): e0011842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630843

ABSTRACT

BACKGROUND: Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS: We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE: The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.


Subject(s)
Antibodies, Viral , Zika Virus Infection , Zika Virus , Humans , Seroepidemiologic Studies , Zika Virus Infection/epidemiology , Zika Virus/immunology , Antibodies, Viral/blood , Immunoglobulin G/blood , Global Health , Asymptomatic Infections/epidemiology
9.
Braz J Infect Dis ; 28(2): 103741, 2024.
Article in English | MEDLINE | ID: mdl-38670165

ABSTRACT

Sickle Cell Disease (SCD) is a hereditary disease characterized by extravascular and intravascular hemolysis and clinical variability, from mild pain to potentially life-threatening. Arboviruses include mainly Zika (ZIKV), Chikungunya (CHKV), and Dengue (DENV) virus, and are considered a public and social health problem. The present cross-sectional observational study aimed to investigate the prevalence of arbovirus infection in SCD patients from two Brazilian cities, Salvador and Manaus located in Bahia and Amazonas states respectively. A total of 409 individuals with SCD were included in the study, and 307 (75.06 %) patients tested positive for DENV-IgG, 161 (39.36 %) for ZIKV-IgG, and 60 (14.67 %) for CHIKV-IgG. Only one individual was positive for DENV-NS1 and another for DENV-IgM, both from Salvador. No individuals had positive serology for ZIKV-IgM or CHIKV-IgM. Arbovirus positivity by IgG testing revealed that the SCD group presented high frequencies in both cities. Interestingly, these differences were only statistically significant for ZIKV-IgG (p = 0.023) and CHIKV-IgG (p = 0.005) among SCD patients from Manaus. The reshaping of arbovirus from its natural habitat by humans due to disorderly urban expansion and the ease of international Mobility has been responsible for facilitating the spread of vector-borne infectious diseases in humans. We found the need for further studies on arboviruses in this population to elucidate the real association and impact, especially in acute infection. We hope that this study will contribute to improvements in the personalized clinical follow-up of SCD patients, identifying the influence of arbovirus infection in severe disease manifestations.


Subject(s)
Anemia, Sickle Cell , Arbovirus Infections , Arboviruses , Humans , Brazil/epidemiology , Anemia, Sickle Cell/epidemiology , Anemia, Sickle Cell/complications , Cross-Sectional Studies , Male , Female , Adult , Prevalence , Arbovirus Infections/epidemiology , Arbovirus Infections/virology , Young Adult , Adolescent , Arboviruses/isolation & purification , Immunoglobulin G/blood , Child , Zika Virus Infection/epidemiology , Zika Virus Infection/complications , Antibodies, Viral/blood , Middle Aged , Dengue/epidemiology , Immunoglobulin M/blood , Dengue Virus/immunology , Zika Virus/immunology , Zika Virus/isolation & purification , Child, Preschool , Chikungunya Fever/epidemiology , Chikungunya Fever/complications
10.
Emerg Microbes Infect ; 13(1): 2348528, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38662785

ABSTRACT

Zika is a systemic inflammatory disease caused by infection with Zika virus (ZIKV). ZIKV infection in adults is associated with encephalitis marked by elevated expression of pro-inflammatory cytokines and chemokines, as well as increased brain infiltration of immune cells. In this study, we demonstrate that ZIKV encephalitis in a mouse infection model exhibits increased brain TSPO expression. TSPO expression on brain-resident and infiltrating immune cells in ZIKV infection correlates with disease and inflammation status in the brain. Brain TSPO expression can also be sensitively detected ex vivo and in vitro using radioactive small molecule probes that specifically bind to TSPO, such as [3H]PK11195. TSPO expression on brain-resident and infiltrating immune cells is a biomarker of ZIKV neuroinflammation, which can also be a general biomarker of acute viral neuroinflammatory disease.


Subject(s)
Biomarkers , Brain , Neuroinflammatory Diseases , Receptors, GABA , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/virology , Zika Virus Infection/immunology , Zika Virus Infection/metabolism , Mice , Receptors, GABA/metabolism , Receptors, GABA/genetics , Zika Virus/immunology , Brain/virology , Brain/metabolism , Brain/pathology , Neuroinflammatory Diseases/virology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Disease Models, Animal , Humans , Mice, Inbred C57BL , Female , Cytokines/metabolism
11.
Virus Res ; 345: 199376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643856

ABSTRACT

Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are antigenically related flaviviruses that co-circulate in many countries/territories. The interaction between the two viruses needs to be determined. Recent findings by ourselves and other labs showed that JEV-elicited antibodies (Abs) and CD8+T cells exacerbate and protect against subsequent ZIKV infection, respectively. However, the impact of JEV envelope (E) protein domain III (EDIII)-induced immune responses on ZIKV infection is unclear. We show here that sera from JEV-EDIII-vaccinated mice cross-react with ZIKV-EDIII in vitro, and transfer of the same sera to mice significantly decreases death upon lethal ZIKV infection at a dose-dependent manner. Maternally acquired anti-JEV-EDIII Abs also significantly reduce the mortality of neonatal mice born to JEV-EDIII-immune mothers post ZIKV challenge. Similarly, transfer of ZIKV-EDIII-reactive IgG purified from JEV-vaccinated humans increases the survival of ZIKV-infected mice. Notably, transfer of an extremely low volume of JEV-EDIII-immune sera or ZIKV-EDIII-reactive IgG does not mediate the Ab-mediated enhancement (ADE) of ZIKV infection. Similarly, transfer of JEV-EDIII-elicited CD8+T cells protects recipient mice against ZIKV challenge. These results demonstrate that JEV-EDIII-induced immune components including Abs and T cells have protective roles in ZIKV infection, suggesting EDIII is a promising immunogen for developing effective and safety JEV vaccine.


Subject(s)
Antibodies, Viral , CD8-Positive T-Lymphocytes , Cross Protection , Encephalitis Virus, Japanese , Viral Envelope Proteins , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , CD8-Positive T-Lymphocytes/immunology , Zika Virus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Envelope Proteins/immunology , Mice , Encephalitis Virus, Japanese/immunology , Cross Protection/immunology , Female , Cross Reactions , Encephalitis, Japanese/prevention & control , Encephalitis, Japanese/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin G/blood , Disease Models, Animal , Immunization
12.
Microbiol Spectr ; 12(6): e0075824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687079

ABSTRACT

Human immunoglobulin preparations contain a diverse range of polyclonal antibodies that reflect past immune responses against pathogens encountered by the blood donor population. In this study, we examined a panel of intravenous immunoglobulins (IGIVs) manufactured over the past two decades (1998-2020) for their capacity to neutralize or enhance Zika virus (ZIKV) infection in vitro. These IGIVs were selected specifically based on their production dates in relation to the occurrences of two flavivirus outbreaks in the U.S.: the West Nile virus (WNV) outbreak in 1999 and the ZIKV outbreak in 2015. As demonstrated by enzyme-linked immunosorbent assay (ELISA) experiments, IGIVs made before the ZIKV outbreak already harbored antibodies that bind to various peptides across the envelope protein of ZIKV because of the WNV outbreak. Using phage display, the most dominant binding site was mapped precisely to the P2 peptide between residues 211 and 230 within domain II, where BF1176-56, an anti-ZIKV monoclonal antibody, also binds. When tested in permissive Vero E6 cells for ZIKV neutralization, the IGIVs, even after undergoing rigorous enrichment for P2 binding specificity, failed, as did BF1176-56. Meanwhile, BF1176-56 enhanced ZIKV infection in both FcγRII-expressing K562 cells and human peripheral blood mononuclear cells. However, for enhancement by the IGIVs to be detected in these cells, a substantial increase in their P2 binding specificity was required, thus linking the P2 site with ZIKV enhancement in vitro. Our findings warrant further study of the significance of elevated levels of anti-WNV antibodies in IGIVs, considering that various mechanisms operating in vivo may modulate ZIKV infection outcomes.IMPORTANCEWe investigated the capacity of intravenous immunoglobulins manufactured previously over two decades (1998-2020) to neutralize or enhance Zika virus infection in vitro. West Nile virus antibodies in IGIVs could not neutralize Zika virus initially; however, once the IGIVs were concentrated further, they enhanced its infection. These findings lay the groundwork for exploring how preexisting WNV antibodies in IGIVs could impact Zika infection, both in vitro and in vivo. Our observations are historically significant, since we tested a panel of IGIV lots that were carefully selected based on their production dates which covered two major flavivirus outbreaks in the U.S.: the WNV outbreak in 1999 and the ZIKV outbreak in 2015. These findings will facilitate our understanding of the interplay among closely related viral pathogens, particularly from a historical perspective regarding large blood donor populations. They should remain relevant for future outbreaks of emerging flaviviruses that may potentially affect vulnerable populations.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , West Nile virus/immunology , Antibodies, Viral/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Vero Cells , West Nile Fever/immunology , West Nile Fever/virology , Antibodies, Neutralizing/immunology , Binding Sites , Immunoglobulins, Intravenous/immunology , Viral Envelope Proteins/immunology , Enzyme-Linked Immunosorbent Assay
13.
Biologicals ; 86: 101765, 2024 May.
Article in English | MEDLINE | ID: mdl-38593685

ABSTRACT

Yellow fever (YF) is one of the most acute viral hemorrhagic diseases of the 18th and 19th centuries, which continues to cause severe morbidity and mortality in Africa. After 21 years of no reported cases of yellow fever in Nigeria, till 2017 where a case was confirmed in Kwara State, also in November 2018,WHO was informed of a cluster of suspected yellow fever cases and deaths in Edo state, Nigeria. The study was among all age group attending health centres in Benin City, Edo state. A total of 280 blood samples were collected from consented febrile patients and were screened for antibodies to Zika virus using rapid diagnostic test (RDT) kits. Blood samples positive to Zika virus (IgM/IgG RDT), were subjected to molecular characterization. Using the flavividae family primers, six (6) samples where confirmed positive by Hemi-nested reverse transcription PCR (hnRT-PCR) sequencing. Nucleotide sequence blast revealed the sequenceswere similar to Yellow fever virus strains. Phylogenetic analysis revealed that the yellow fever virus sequences are closely related to the African strains. Despite the safe and effective yellow fever vaccine, yellow fever virus is seen to be in circulation, hence the need for continues mass vaccination.


Subject(s)
Phylogeny , Yellow Fever , Yellow fever virus , Humans , Nigeria/epidemiology , Yellow fever virus/genetics , Yellow fever virus/immunology , Yellow Fever/epidemiology , Yellow Fever/virology , Yellow Fever/blood , Adult , Female , Male , Adolescent , Middle Aged , Child , Child, Preschool , Young Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Infant , Zika Virus/genetics , Zika Virus/immunology , Zika Virus/isolation & purification
14.
Am J Trop Med Hyg ; 110(6): 1178-1179, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38653230

ABSTRACT

We report strong Zika virus (ZIKV) neutralizing antibody responses in African green monkeys (Chlorocebus sabaeus) up to 1,427 days after ZIKV exposure via the subcutaneous, intravaginal, or intrarectal routes. Our results suggest that immunocompetent African green monkeys previously infected with ZIKV are likely protected from reinfection for years, possibly life, and would not contribute to virus amplification during ZIKV epizootics.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Zika Virus/immunology , Zika Virus Infection/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female
15.
Diagn Microbiol Infect Dis ; 109(2): 116238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554539

ABSTRACT

The interpretation for Zika virus serology results is challenging due to high antibody cross reactivity with other flaviviruses. This limits availability of reliable and accurate methods for serosurveillance studies to understand the disease burden. Therefore, we conducted study to harmonize anti-Zika IgG antibody detection assays with 1st WHO International Standard (16/352) and working standard (16/320) for anti-Zika virus antibody.Additionally, evaluated NuGenTMZIKA-IgG and NovaLisa®ZIKA virus IgG-Capture ELISA using a panel of 278 seraFurther, 106 samples positive for other-flavi viruses were taken for assessing cross-reactivity of the assay, all serums were further tested by Zika-PRNT. The results of this study indicates satisfactory performance of both the assays. Serological and neutralization assays were calibrated according to the international standards. This will help in understanding antibody dynamics in serosurveillance and vaccine studies. However the performance of the kits with possibilities of cross-reactivity will have to be verified by coupling ZIKV and DENV specific ELISA.


Subject(s)
Antibodies, Viral , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Zika Virus Infection , Zika Virus , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Zika Virus/immunology , Immunoglobulin G/blood , Humans , Antibodies, Viral/blood , Zika Virus Infection/diagnosis , Zika Virus Infection/immunology , Zika Virus Infection/blood , Reagent Kits, Diagnostic/standards , Serologic Tests/standards , Serologic Tests/methods , Sensitivity and Specificity , Female , Adult , Adolescent , Young Adult
16.
Adv Healthc Mater ; 13(13): e2303619, 2024 May.
Article in English | MEDLINE | ID: mdl-38340040

ABSTRACT

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Subject(s)
Chikungunya virus , Zika Virus , Animals , Mice , Chikungunya virus/immunology , Zika Virus/immunology , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/chemistry , Mice, Inbred BALB C , Female , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Antigens, Viral/chemistry , Nanovaccines , Multienzyme Complexes
17.
J Biomol Struct Dyn ; 41(9): 3762-3771, 2023 06.
Article in English | MEDLINE | ID: mdl-35318896

ABSTRACT

Zika virus (ZIKV), an RNA virus, rapidly spreads Aedes mosquito-borne sickness. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. In this study, to address these unmet medical needs, we aimed to design B- and T-cell candidate multi-epitope-based subunit against ZIKV using an in silico approach. In this study we applied immunoinformatics, molecular docking, and dynamic simulation assessments targeting the most immunogenic proteins; the capsid (C), envelope (E) proteins and the non-stuctural protein (NS1), described in our previous study, and which predicted immunodominant B and T cell epitopes. The final non-allergenic and highly antigenic multi-epitope was constituted of immunogenic screened-epitopes (3 CTL and 3 HTL) and the ß-defensin as an adjuvant that have been linked using EAAAK, AAY, and GPGPG linkers, respectively. The final construct containing 143 amino acids was characterized for its allergenicity, antigenicity, and physiochemical properties; and found to be safe and immunogenic with a good prediction of solubility. The existence of IFN-γ epitopes asserts the capacity to trigger strong immune responses. Subsequently, the molecular docking among vaccine and immune receptors (TLR2/TLR4) was revealed with a good binding affinity with and stable molecular interactions. Molecular dynamics simulation confirmed the stability of the complexes. Finally, the construct was subjected to in silico cloning demonstrating the efficiently of its expression in E.coli. However, this study needs the experimental validation to demonstrate vaccine safety and efficacy.Communicated by Ramaswamy H. Sarma.


Subject(s)
Computer Simulation , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Viral Vaccines , Zika Virus Infection , Zika Virus , Cloning, Molecular , Codon/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Molecular Docking Simulation , Solubility , Toll-Like Receptors/immunology , Viral Vaccines/adverse effects , Viral Vaccines/chemistry , Viral Vaccines/immunology , Zika Virus/chemistry , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Humans
18.
J Mol Biol ; 434(19): 167759, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35872070

ABSTRACT

The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and cholesterol remains unclear. We previously showed that inhibition of IAV entry by IFITM3 is associated with its ability to promote cellular membrane rigidity, and these activities are functionally linked by a shared requirement for the amphipathic helix (AH) found in the intramembrane domain (IMD) of IFITM3. Furthermore, it has been shown that the AH of IFITM3 alters lipid membranes in vitro in a cholesterol-dependent manner. Therefore, we aimed to elucidate the relationship between IFITM3 and cholesterol in more detail. Using a fluorescence-based in vitro binding assay, we found that a peptide derived from the AH of IFITM3 directly interacted with the cholesterol analog, NBD-cholesterol, while other regions of the IFITM3 IMD did not, and native cholesterol competed with this interaction. In addition, recombinant full-length IFITM3 protein also exhibited NBD-cholesterol binding activity. Importantly, previously characterized mutations within the AH of IFITM3 that strongly inhibit antiviral function (F63Q and F67Q) disrupted AH structure in solution, inhibited cholesterol binding in vitro, and restricted bilayer insertion in silico. Our data suggest that direct interactions with cholesterol may contribute to the inhibition of membrane fusion pore formation by IFITM3. These findings may facilitate the design of therapeutic peptides for use in broad-spectrum antiviral therapy.


Subject(s)
Cholesterol , Influenza A virus , Membrane Proteins , RNA-Binding Proteins , Cholesterol/chemistry , Humans , Influenza A virus/immunology , Membrane Proteins/chemistry , Protein Conformation, alpha-Helical , RNA-Binding Proteins/chemistry , Virus Internalization , Zika Virus/immunology
19.
J Virol ; 96(11): e0007122, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35575481

ABSTRACT

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Somatic Hypermutation, Immunoglobulin , Zika Virus , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Epitopes/genetics , Mutation , Rabbits , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Zika Virus/immunology
20.
MMWR Morb Mortal Wkly Rep ; 71(10): 375-377, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35271558

ABSTRACT

The diagnosis of dengue disease, caused by the dengue virus (DENV) (a flavivirus), often requires serologic testing during acute and early convalescent phases of the disease. Some symptoms of DENV infection, such as nonspecific fever, are similar to those caused by infection with SARS-CoV-2, the virus that causes COVID-19. In studies with few COVID-19 cases, positive DENV immunoglobulin M (IgM) results were reported with various serologic tests, indicating possible cross-reactivity in these tests for DENV and SARS-CoV-2 infections (1,2). DENV antibodies can cross-react with other flaviviruses, including Zika virus. To assess the potential cross-reactivity of SARS-CoV-2, DENV, and Zika virus IgM antibodies, serum specimens from 97 patients from Puerto Rico and 12 U.S.-based patients with confirmed COVID-19 were tested using the DENV Detect IgM Capture enzyme-linked immunosorbent assay (ELISA) (InBios International).* In addition, 122 serum specimens from patients with confirmed dengue and 121 from patients with confirmed Zika virus disease (all from Puerto Rico) were tested using the SARS-CoV-2 pan-Ig Spike Protein ELISA (CDC).† Results obtained for DENV, Zika virus IgM, and SARS-CoV-2 antibodies indicated 98% test specificity and minimal levels of cross-reactivity between the two flaviviruses and SARS-CoV-2. These findings indicate that diagnoses of dengue or Zika virus diseases with the serological assays described in this report are not affected by COVID-19, nor do dengue or Zika virus diseases interfere with the diagnosis of COVID-19.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Serologic Tests , Zika Virus/immunology , COVID-19/diagnosis , Cross Reactions/immunology , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Puerto Rico , Sensitivity and Specificity , United States , Zika Virus Infection/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...