Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Viruses ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34834920

ABSTRACT

Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.


Subject(s)
GTP-Binding Proteins/metabolism , Neoplasm Proteins/metabolism , Zika Virus Infection/enzymology , Zika Virus/physiology , rhoB GTP-Binding Protein/metabolism , A549 Cells , CRISPR-Cas Systems , GTP-Binding Proteins/genetics , Humans , Neoplasm Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Virus Internalization , Virus Replication , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/virology , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , rhoB GTP-Binding Protein/genetics
2.
Science ; 373(6551): 231-236, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244417

ABSTRACT

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Subject(s)
DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , RNA Interference , RNA Viruses/physiology , RNA, Viral/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Stem Cells/enzymology , Stem Cells/virology , Alternative Splicing , Animals , Brain/enzymology , Brain/virology , Cell Line , DEAD-box RNA Helicases/chemistry , Humans , Immunity, Innate , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Organoids/enzymology , Organoids/virology , RNA Virus Infections/enzymology , RNA Virus Infections/immunology , RNA Virus Infections/virology , RNA Viruses/genetics , RNA Viruses/immunology , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , Ribonuclease III/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Virus Replication , Zika Virus/genetics , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/enzymology , Zika Virus Infection/immunology , Zika Virus Infection/virology
3.
Cells ; 9(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316163

ABSTRACT

Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24 h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, ß-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6 h and 24 h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to be a major contributor in the spread of the virus in cases of vertical transmission.


Subject(s)
Cytokines/metabolism , Mast Cells/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Adult , Brazil , Cell Line , Female , Humans , Immunohistochemistry , Infectious Disease Transmission, Vertical , Interleukin-10/metabolism , Interleukin-6/metabolism , Mast Cells/pathology , Mast Cells/ultrastructure , Mast Cells/virology , Microscopy, Electron, Transmission , Placenta/immunology , Placenta/metabolism , Placenta/virology , Pregnancy , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Zika Virus/pathogenicity , Zika Virus Infection/enzymology , Zika Virus Infection/physiopathology , Zika Virus Infection/transmission , beta-N-Acetylhexosaminidases/metabolism
4.
PLoS Pathog ; 16(4): e1008509, 2020 04.
Article in English | MEDLINE | ID: mdl-32302362

ABSTRACT

Zika virus (ZIKV) is a unique flavivirus with high tropism to the testes. ZIKV can persist in human semen for months and can cause testicular damage in male mice. However, the mechanisms through which ZIKV enters the testes remain unclear. In this study, we revealed that matrix metalloproteinase 9 (MMP9) was upregulated by ZIKV infection in cell culture and in A129 mice. Furthermore, using an in vitro Sertoli cell barrier model and MMP9-/- mice, we found that ZIKV infection directly affected the permeability of the blood-testis barrier (BTB), and knockout or inhibition of MMP9 reduced the effects of ZIKV on the Sertoli cell BTB, highlighting its role in ZIKV-induced disruption of the BTB. Interestingly, the protein levels of MMP9 were elevated by ZIKV nonstructural protein 1 (NS1) in primary mouse Sertoli cells (mSCs) and other cell lines. Moreover, the interaction between NS1 and MMP9 induced the K63-linked polyubiquitination of MMP9, which enhanced the stability of MMP9. The upregulated MMP9 level led to the degradation of essential proteins involved in the maintenance of the BTB, such as tight junction proteins (TJPs) and type Ⅳ collagens. Collectively, we concluded that ZIKV infection promoted the expression of MMP9 which was further stabilized by NS1 induced K63-linked polyubiquitination to affect the TJPs/ type Ⅳ collagen network, thereby disrupting the BTB and facilitating ZIKV entry into the testes.


Subject(s)
Blood-Testis Barrier/metabolism , Blood-Testis Barrier/virology , Matrix Metalloproteinase 9/metabolism , Testis/virology , Zika Virus Infection/metabolism , Zika Virus/physiology , A549 Cells , Animals , Blood-Testis Barrier/enzymology , Collagen Type IV/metabolism , HEK293 Cells , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Semen/metabolism , Semen/virology , Sertoli Cells/enzymology , Sertoli Cells/metabolism , Sertoli Cells/virology , Spermatogenesis , Testis/blood supply , Testis/metabolism , Tight Junction Proteins/metabolism , Up-Regulation , Viral Nonstructural Proteins/metabolism , Virus Internalization , Zika Virus Infection/enzymology , Zika Virus Infection/virology
5.
Article in English | MEDLINE | ID: mdl-31636070

ABSTRACT

Flaviviruses comprise several medically important viruses, including Japanese encephalitis virus, West Nile virus, dengue virus (DENV), yellow fever virus, and Zika virus (ZIKV). A large outbreak of DENV and ZIKV occurred recently, leading to many cases of illness and death. However, despite decades of effort, we have no clinically specific therapeutic drugs against DENV and ZIKV. Previous studies showed that inflammatory responses play a critical role in dengue and Zika virus pathogenesis. Thus, in this study, we examined a series of novel anti-inflammatory compounds and found that treatment with compound 2d could dose dependently reduce viral protein expression and viral progeny production in HEK-293 and Raw264.7 cells infected with four serotypes of DENV and ZIKV. In addition, considering medication safety, compound 2d could not suppress cyclooxygenase-1 (COX-1) enzymatic activities and thus could prevent the side effect of bleeding. Moreover, compound 2d significantly inhibited COX-2 enzymatic activities and prostaglandin E2 levels, associated with viral replication, compared to results with a selective COX-2 inhibitor, celecoxib. Furthermore, administering 5 mg/kg compound 2d to DENV-2-infected AG129 mice prolonged survival and reduced viremia and serum cytokine levels. Overall, compound 2d showed therapeutic safety and efficacy in vitro and in vivo and could be further developed as a potential therapeutic agent for flavivirus infection.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dengue/drug therapy , Zika Virus Infection/drug therapy , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Celecoxib/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dengue/enzymology , Dengue/virology , Dengue Virus/classification , Dengue Virus/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Mice, 129 Strain , RAW 264.7 Cells , Safety , Serogroup , Treatment Outcome , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/enzymology , Zika Virus Infection/virology
6.
J Biol Chem ; 294(40): 14591-14602, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31375561

ABSTRACT

Zika virus (ZIKV)3 is an enveloped, single-stranded, positive-sense RNA virus of the Flaviviridae family that has emerged as a public health threat because of its global transmission and link to microcephaly. Currently there is no vaccine for this virus. Conversion of cholesterol to 25-hydroxycholesterol by cholesterol 25-hydroxylase (CH25H) has been shown to have broad antiviral properties. However, the molecular basis of induction of CH25H in humans is not known. Elucidation of signaling and transcriptional events for induction of CH25H expression is critical for designing therapeutic antiviral agents. In this study, we show that CH25H is induced by ZIKV infection or Toll-like receptor stimulation. Interestingly, CH25H is induced by pro-inflammatory cytokines, including IL-1ß, tumor necrosis factor α, and IL-6, and this induction depends on the STAT1 transcription factor. Additionally, we observed that cAMP-dependent transcription factor (ATF3) weakly binds to the CH25H promoter, suggesting cooperation with STAT1. However, ZIKV-induced CH25H was independent of type I interferon. These findings provide important information for understanding how the Zika virus induces innate inflammatory responses and promotes the expression of anti-viral CH25H protein.


Subject(s)
Activating Transcription Factor 3/genetics , STAT1 Transcription Factor/genetics , Steroid Hydroxylases/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Cytokines/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation, Enzymologic , Humans , Inflammation/enzymology , Inflammation/genetics , Inflammation/virology , Interferon Type I/genetics , Interleukin-1beta/genetics , Interleukin-6/genetics , Macrophages/virology , Steroid Hydroxylases/chemistry , Toll-Like Receptors/genetics , Tumor Necrosis Factor-alpha/genetics , Virus Replication/genetics , Zika Virus/pathogenicity , Zika Virus Infection/enzymology , Zika Virus Infection/virology
7.
Emerg Microbes Infect ; 8(1): 624-636, 2019.
Article in English | MEDLINE | ID: mdl-30999821

ABSTRACT

Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus. Treatment with these compounds inhibited the multiplication of the three viruses in cultured cells. PF-05175157 induced a reduction of the viral load in serum and kidney in WNV-infected mice, unveiling its therapeutic potential for the treatment of chronic kidney disease associated with persistent WNV infection. This study constitutes a proof of concept of the reliability of ACC inhibitors to become viable antiviral candidates. These results support the repositioning of metabolic inhibitors as broad-spectrum antivirals.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Dengue Virus/physiology , Dengue/enzymology , Enzyme Inhibitors/administration & dosage , West Nile Fever/enzymology , West Nile virus/physiology , Zika Virus Infection/enzymology , Zika Virus/physiology , Acetyl-CoA Carboxylase/metabolism , Animals , Antiviral Agents/administration & dosage , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/genetics , Disease Models, Animal , Female , Humans , Male , Mice , Virus Replication/drug effects , West Nile Fever/drug therapy , West Nile Fever/virology , West Nile virus/drug effects , West Nile virus/genetics , Zika Virus/drug effects , Zika Virus/genetics , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
8.
J Intern Med ; 285(2): 215-222, 2019 02.
Article in English | MEDLINE | ID: mdl-30222212

ABSTRACT

BACKGROUND: Vertical transmission of Zika virus (ZIKV) is associated with congenital malformations but the mechanism of pathogenesis remains unclear. Although host genetics appear to play a role, no genetic association study has yet been performed to evaluate this question. In order to investigate if maternal genetic variation is associated with Congenital Zika Syndrome (CZS), we conducted a case-control study in a cohort of Brazilian women infected with ZIKV during pregnancy. METHODS: A total of 100 women who reported symptoms of zika during pregnancy were enrolled and tested for ZIKV. Among 52 women positive for ZIKV infection, 28 were classified as cases and 24 as controls based on the presence or absence of CZS in their infants. Variations in the coding region of 205 candidate genes involved in cAMP signaling or immune response were assessed by high throughput sequencing and tested for association with development of CZS. RESULTS: From the 817 single nucleotide variations (SNVs) included in association analyses, 22 SNVs in 17 genes were associated with CZS under an additive model (alpha = 0.05). Variations c.319T>C (rs11676272) and c.1297G>A, located at ADCY3 and ADCY7 genes showed the most prominent effect. The association of ADCY3 and ADCY7 genes was confirmed using a Sequence Kernel Association Test to assess the joint effect of common and rare variations, and results were statistically significant after adjustment for multiple comparisons (P < 0.002). CONCLUSION: These results suggest that maternal ADCY genes contribute to ZIKV pathogenicity and influence the outcome of CZS, being promising candidates for further replication studies and functional analysis.


Subject(s)
Adenylyl Cyclases/genetics , Mutation , Pregnancy Complications, Infectious , Zika Virus Infection/genetics , Adenylyl Cyclases/metabolism , Brazil/epidemiology , DNA Mutational Analysis , DNA, Viral/analysis , Female , Follow-Up Studies , Humans , Incidence , Pregnancy , Retrospective Studies , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/enzymology , Zika Virus Infection/epidemiology
9.
Pan Afr Med J ; 30: 2, 2018.
Article in English | MEDLINE | ID: mdl-30123405

ABSTRACT

The re-emergence of Zika virus in Brazil and other contiguous countries is a source of anxiety for pregnant women on account of its association with microcephaly. Adverse pregnancy outcome has huge mental health implications. It is essential for health providers to incorporate psychosocial care as part of pre and postnatal care for women in all countries affected by the Zika virus infection.


Subject(s)
Microcephaly/epidemiology , Pregnancy Complications, Infectious/epidemiology , Zika Virus Infection/complications , Anxiety/epidemiology , Anxiety/etiology , Brazil/epidemiology , Female , Humans , Microcephaly/virology , Pregnancy , Pregnancy Complications, Infectious/virology , Prenatal Care/methods , Zika Virus Infection/enzymology
10.
PLoS One ; 13(2): e0193133, 2018.
Article in English | MEDLINE | ID: mdl-29470500

ABSTRACT

It has been estimated for dengue infection that the global population at risk is 3.5 billion people, which makes dengue an important public health problem. The causative agents of dengue are dengue viruses. For dengue virus replication, the dengue virus NS5 protein is of special importance as it has several enzyme activities important for viral replication. Previous reports of phosphorylation and SUMOylation of dengue NS5 have shown these protein modifications have important consequences for NS5 functions. In this report we identify glutathionylation, another reversible post translation modification that impacts on NS5 enzyme activity. Using dengue virus infected cells we employed specific antibodies and mass spectrometry to identify 3 cysteine residues of NS5 protein as being glutathionylated. Glutathionylation is a post translational protein modification where glutathione is covalently attached to a cysteine residue. We showed glutathionylation occurs on 3 conserved cysteine residues of dengue NS5. Then we generated two flavivirus recombinant full length proteins, dengue NS5 and Zika NS5, to characterize two of the NS5 enzyme activities, namely, guanylyltransferase and RNA-dependent RNA polymerase activities. We show glutathionylation of dengue and Zika NS5 affects enzyme activities of the two flavivirus proteins. The data suggests that glutathionylation is a general feature of the flavivirus NS5 protein and the modification has the potential to modulate several of the NS5 enzyme functions.


Subject(s)
Dengue Virus/enzymology , Dengue/enzymology , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Zika Virus Infection/enzymology , Zika Virus/enzymology , Dengue/genetics , Dengue Virus/genetics , Glutathione , HEK293 Cells , Humans , Nucleotidyltransferases/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Zika Virus/genetics , Zika Virus Infection/genetics
11.
J Gen Virol ; 98(8): 2061-2068, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28786784

ABSTRACT

Recently, Zika virus (ZIKV) outbreak has been associated with a sharp increase in cases of Guillain-Barré syndrome and severe fetal abnormalities. However, the mechanism underlying the interaction of ZIKV with host cells is not yet clear. Axl, a receptor tyrosine kinase, is postulated as a receptor for ZIKV entry; however, its in vivo role during ZIKV infection and its impact on the outcome of the disease have not been fully characterized and evaluated. Moreover, there are contradictory results on its involvement in ZIKV infection. Here we utilized Axl-deficient mice (Axl-/-) and their littermates (Axl+/-) to study the in vivo role of Axl in ZIKV infection. Our results showed that both Axl+/- and Axl-/- suckling mice supported the replication of ZIKV and presented clinical manifestations. No significant difference has been found between Axl-deficient mice and their littermates in terms of the survival rate, clinical manifestations, viral load, ZIKV distribution and histopathological changes in major organs. These results therefore indicate that Axl is not an indispensable factor for ZIKV infection in mice.


Subject(s)
Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zika Virus Infection/enzymology , Zika Virus/physiology , Animals , Female , Host-Pathogen Interactions , Humans , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Virus Internalization , Virus Replication , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/virology , Axl Receptor Tyrosine Kinase
12.
Circ Res ; 119(11): 1183-1189, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27650556

ABSTRACT

RATIONALE: The mosquito-borne Zika virus (ZIKV) is now recognized as a blood-borne pathogen, raising an important question about how the virus gets into human bloodstream. The imminent threat of the ZIKV epidemic to the global blood supply also demands novel therapeutics to stop virus transmission though transfusion. OBJECTIVE: We intend to characterize ZIKV tropism for human endothelial cells (ECs) and provide potential targets for intervention. METHODS AND RESULTS: We conducted immunostaining, plaque assay, and quantitative reverse transcription-polymerase chain reaction of ZIKV RNA to evaluate the possible infection of ECs by ZIKV. Both the African and the South American ZIKV strains readily infect human umbilical vein endothelial cells and human ECs derived from aortic and coronary artery, as well as the saphenous vein. Infected ECs released infectious progeny virus. Compared with the African strains, South American ZIKV isolates replicate faster in ECs and are partially cytopathic, suggesting enhanced virulence of these isolates. Flow cytometric analyses showed that the susceptibility of ECs positively correlated with the cell surface levels of tyrosine-protein kinase receptor UFO (AXL) receptor tyrosine kinase. Gain- and loss-of-function studies further revealed that AXL is required for ZIKV entry at a postbinding step. Finally, small-molecule inhibitors of the AXL kinase significantly reduced ZIKA infection of ECs. CONCLUSIONS: We identified EC as a key cell type for ZIKV infection. These data support the view of hematogenous dissemination of ZIKV and implicate AXL as a new target for antiviral therapy.


Subject(s)
Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/virology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zika Virus Infection/enzymology , Zika Virus/enzymology , Anilides/pharmacology , Animals , Cell Line, Transformed , Chlorocebus aethiops , Cricetinae , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelial Cells/virology , HEK293 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Proto-Oncogene Proteins/antagonists & inhibitors , Pyridines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Vero Cells , Zika Virus/drug effects , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...