Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Vet Microbiol ; 290: 109977, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185072

ABSTRACT

Japanese encephalitis virus (JEV) is a zoonotic pathogen belonging to the Flavivirus genus, causing viral encephalitis in humans and reproductive failure in swine. The 3' untranslated region (3'UTR) of JEV contains highly conservative secondary structures required for viral translation, RNA synthesis, and pathogenicity. Identification of host factors interacting with JEV 3'UTR is crucial for elucidating the underlying mechanism of flavivirus replication and pathogenesis. In this study, U2 snRNP auxiliary factor 2 (U2AF2) was identified as a novel cellular protein that interacts with the JEV genomic 3'UTR (the SL-I, SL-II, SL-III, and DB region) via its 1 to 148 amino acids. JEV infection or JEV 3' UTR on its own triggered the nuclear-localized U2AF2 redistributed to the cytoplasm and colocalized with viral replication complex. U2AF2 also interacts with JEV NS3 and NS5 protein, the downregulation of U2AF2 nearly abolished the formation of flavivirus replication vesicles. The production of JEV protein, RNA, and viral titers were all increased by U2AF2 overexpression and decreased by knockdown. U2AF2 also functioned as a pro-viral factor for Zika virus (ZIKV) and West Nile virus (WNV), but not for vesicular stomatitis virus (VSV). Mechanically, U2AF2 facilitated the synthesis of both positive- and negative-strand flavivirus RNA without affecting viral attachment, internalization or release process. Collectively, our work paves the way for developing U2AF2 as a potential flavivirus therapeutic target.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , Swine Diseases , Zika Virus Infection , Zika Virus , Humans , Animals , Swine , Flavivirus/genetics , 3' Untranslated Regions , Ribonucleoprotein, U2 Small Nuclear/genetics , Zika Virus Infection/genetics , Zika Virus Infection/veterinary , Virus Replication/genetics , Cell Line , Zika Virus/genetics , Zika Virus/metabolism , Encephalitis Virus, Japanese/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Splicing Factor U2AF/genetics , Swine Diseases/genetics
2.
Vector Borne Zoonotic Dis ; 24(2): 122-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37890113

ABSTRACT

Background: Zika virus (ZIKV) has significant potential to cause future outbreaks due to insufficient countermeasures. The evolution of ZIKV in Southeast Asian countries remains poorly understood. Materials and Methods: The phylogenetic, phylogeographic network, and recombination analyses of 366 ZIKV complete genome sequences identified between 1947 and 2021 were performed and the amino acid variation landscape was determined to reveal the evolutionary characteristics. Results: ZIKV falls into two major genogroups: GI and GII, segregated into further subgenogroups (GI-1 to GI-3) and (GII-1 to GII-3), respectively. Importantly, Thailand strains cluster with Southeast Asian outbreak strains (Singapore 2016, the Philippines 2012, Cambodia 2010) into GII-2 and form a lineage independent of French Polynesia and the Americas large outbreak strains. Thailand ZIKV strains shared their ancestral route to the strains from French Polynesia, which further connects to Brazil ZIKV through a short mutational branch. Both recombination and specific mutations may contribute to the emergence of new virus lineage in Thailand. Conclusion: This report provides insights into the evolutionary characteristics of ZIKV in Southeast Asia, which may be helpful for epidemiological investigation, vaccine development, and surveillance of the virus.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Phylogeny , Thailand/epidemiology , Disease Outbreaks , Genetic Variation
3.
Vector Borne Zoonotic Dis ; 23(12): 653-661, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37669008

ABSTRACT

Background: The increasing reports on emerging/re-emerging arboviral disease outbreaks or epidemics in Sub-Saharan Africa have been impacted by factors, including the changing climate plus human activities that have resulted in land cover changes. These factors influence the prevalence, incidence, behavior, and distribution of vectors and vector-borne diseases. In this study, we assessed the potential effect of land cover changes on the distribution and oviposition behavior of some arboviral vectors in Zika forest, Uganda, which has decreased by an estimated 7 hectares since 1952 due to an increase in anthropogenic activities in the forest and its periphery. Materials and Methods: Immature mosquitoes were collected using bamboo pots and placed at various levels of a steel tower in the forest and at different intervals from the forest periphery to areas among human dwellings. Collections were conducted for 20 months. Results and Conclusion: Inside the forest, 22,280 mosquitoes were collected belonging to four arboviral vectors: Aedes aegypti, Aedes africanus, Aedes apicoargenteus, and Aedes cumminsii. When compared with similar studies conducted in the forest in 1964, there was a change from a sylvatic to a tendency of peridomestic behavior in A. africanus, which was now collected among human dwellings. There was an unexpected change in the distribution of A. aegypti, which was not only collected outside the forest as in previous reports but also collected in the forest. Conversely, A. cumminsii originally collected in the forest expanded its ranges with collections outside the forest in this study. Aedes simpsoni maintained its distribution range outside the forest among agricultural sites. We suspect that land cover changes were favorable to most of the arboviral vectors hence enhancing their proliferation and habitat range. This potentially increases the transmission of arboviral diseases in the area, hence impacting the epidemiology of emerging/remerging diseases in Uganda.


Subject(s)
Aedes , Arbovirus Infections , Arboviruses , Zika Virus Infection , Zika Virus , Animals , Female , Humans , Uganda/epidemiology , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Arbovirus Infections/epidemiology , Arbovirus Infections/veterinary , Forests
4.
Poult Sci ; 102(10): 102926, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37499611

ABSTRACT

Since 2010, the duck Tembusu virus (DTMUV) has caused a severe outbreak of egg drop syndrome in laying ducks in China, which has resulted in substantial financial losses in the poultry industry. DTMUV nonstructural protein 1 (NS1), as the only secreted protein, could aid in the development of therapeutic antibodies and diagnostic techniques; however, there are few studies on the preparation and epitope identification of monoclonal antibodies (mAbs) against DTMUV NS1. In this study, by indirect enzyme-linked immunosorbent assay (ELISA), Western blotting, and indirect immunofluorescence assay, we screened 6 mAbs (8A4, 8E6, 10F12, 1H11, 3D5, 5C11) that could specifically recognize DTMUV NS1. For epitope mapping of mAbs, a series of GST-tagged truncated fusion proteins of DTMUV NS1 were constructed by prokaryotic expression. Finally, the 4 shortest linear epitopes were identified by indirect ELISA and Western blotting. The epitope 133FVIDGPK139 was recognized by 8A4, the epitope 243IPKTLGGP250 was recognized by 8E6, the epitope 267PWDEK271 was recognized by 10F12, and 156EDFGFGVL163 was recognized by 1H11, 3D5, and 5C11. By sequence alignment and cross-reaction tests, we found that 8A4 and 8E6 had high specificity for DTMUV NS1 compared with that of other mAbs, but 10F12, 1H11, 3D5, and 5C11 exhibited a clear degree of cross-reaction with dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) NS1. Finally, the predicted crystal structure analysis showed the approximate spatial positions of the 4 epitopes on the NS1 dimer. In summary, our study revealed 2 specific mAbs for DTMUV NS1 recognition and 4 multiflavivirus mAbs for DENV, JEV, WNV, and ZIKV NS1 recognition.


Subject(s)
West Nile virus , Zika Virus Infection , Zika Virus , Animals , Epitopes , Antibodies, Monoclonal , Zika Virus Infection/veterinary , Chickens , Antibodies, Viral , Viral Nonstructural Proteins/genetics
5.
PLoS Negl Trop Dis ; 17(7): e0010439, 2023 07.
Article in English | MEDLINE | ID: mdl-37486923

ABSTRACT

Bats are important natural reservoir hosts of a diverse range of viruses that can be transmitted to humans and have been suggested to play an important role in the Zika virus (ZIKV) transmission cycle. However, the exact role of these animals as reservoirs for flaviviruses is still controversial. To further expand our understanding of the role of bats in the ZIKV transmission cycle in Latin America, we carried out an experimental infection in wild-caught Artibeus lituratus bats and sampled several free-living neotropical bats across three countries of the region. Experimental ZIKV infection was performed in wild-caught adult bats (4 females and 5 males). The most relevant findings were hemorrhages in the bladder, stomach and patagium. Significant histological findings included inflammatory infiltrate consisting of a predominance of neutrophils and lymphocytes, in addition to degeneration in the reproductive tract of males and females. This suggests that bat reproduction might be at some level affected by ZIKV. Leukopenia was also observed in some inoculated animals. Hemorrhages, genital alterations, and leukopenia are suggested to be caused by ZIKV; however, since these were wild-caught bats, we cannot exclude other agents. Detection of ZIKV by qPCR was observed at low concentrations in only two urine samples in two inoculated animals. All other animals and tissues tested were negative. Finally, no virus-neutralizing antibodies were found in any animal. To determine ZIKV infection in nature, the blood of a total of 2056 bats was sampled for ZIKV detection by qPCR. Most of the sampled individuals belonged to the genus Pteronotus sp. (23%), followed by the species Carollia sp. (17%), Anoura sp. (14%), and Molossus sp. (13.7%). No sample of any tested species was positive for ZIKV by qPCR. These results together suggest that bats are not efficient amplifiers or reservoirs of ZIKV and may not have an important role in ZIKV transmission dynamics.


Subject(s)
Chiroptera , Zika Virus Infection , Zika Virus , Animals , Female , Male , Costa Rica/epidemiology , French Guiana/epidemiology , Peru/epidemiology , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Zika Virus Infection/diagnosis
6.
Vector Borne Zoonotic Dis ; 23(8): 428-436, 2023 08.
Article in English | MEDLINE | ID: mdl-37389819

ABSTRACT

Background: The dengue, Zika, and Chikungunya arboviruses have spread in America in the past year, thus becoming global health issues. These viruses are maintained in nature in two transmission cycles: an urban cycle, transmitted from hematophagous mosquitoes to humans, and a wild cycle, recorded only in Africa and Asia, involving mosquitoes and nonhuman primates as natural hosts. The evidence shows that these arboviruses infect other wild mammals in America, such as rodents, marsupials, and bats. This study aimed to determine the potential natural infection of arboviruses in bats captured in contrasting sites (tropical forests, urban areas, and caves) in Oaxaca, Mexico. Materials and Methods: Liver samples were collected from some bats and tested for RNA from dengue, Zika, and Chikungunya with the quantitative real-time PCR assay. We analyzed 162 samples that encompassed 23 bat species. Results: No natural infection with any of the three arboviruses was detected in any sample tested. Conclusion: The existence of a wild cycle of the three arboviruses in the American continent is not ruled out. However, owing to the low or zero prevalence recorded in other studies and the present study, bats are likely involved in the arbovirus transmission cycle as accidental hosts.


Subject(s)
Arboviruses , Chikungunya virus , Chiroptera , Dengue Virus , Zika Virus , Animals , Humans , Arboviruses/genetics , Chikungunya Fever/epidemiology , Chikungunya Fever/veterinary , Chikungunya virus/genetics , Dengue/epidemiology , Dengue/veterinary , Zika Virus/genetics , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary
7.
Open Vet J ; 13(4): 400-406, 2023 04.
Article in English | MEDLINE | ID: mdl-37251263

ABSTRACT

Background: In 2015, an unprecedented epidemic of microcephaly occurred in Brazil. Preliminary observations suggested the involvement of cofactors in the etiopathology of Zika virus-associated microcephaly. Bovine viral diarrhea virus (BVDV) was identified in fetal samples with microcephaly, originating in the state of Paraíba, and two virus sequences, obtained from the amniotic fluid collected from mothers with babies affected by Zika and microcephaly, have been characterized as two different species of BVDV, types 1 and 2. Aim: The involvement of BVDV as a co-factor in the etiopathogenesis of Zika virus-associated microcephaly was explored. Methods: A serological screening using an ELISA test was undertaken to detect antibodies against BVDV among patients referred to the Central Laboratory of Natal, Rio Grande do Norte, encompassing microcephalic babies and their mothers, mothers and pregnants not associated with microcephaly and general patients as a control group. Results: Two samples were positive out of 382 tested (0.52%). No specific relation with birth defects could be established. Conclusions: The study might suggest serological evidence of BVDV in humans. Further studies and the application of improved diagnostic tests adapted to humans are necessary to clarify the epidemiological extent and impact of BVDV.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Humans , Microcephaly/epidemiology , Microcephaly/veterinary , Microcephaly/etiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/veterinary , Zika Virus Infection/complications , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Diarrhea/complications , Diarrhea/veterinary
8.
Vector Borne Zoonotic Dis ; 23(7): 393-396, 2023 07.
Article in English | MEDLINE | ID: mdl-37205849

ABSTRACT

Background: Zika virus (ZIKV), first described in 1947, is an arthropod-borne virus associated with sporadic outbreaks and interepidemic transmission. Recent studies have implicated nonhuman primates (NHPs) as the probable reservoir hosts. We tested archived serum samples of NHPs collected in Kenya for evidence of neutralizing ZIKV antibodies. Methods: We randomly selected 212 archived serum samples from Institute of Primate Research in Kenya collected between 1992 and 2017. These specimens were tested by microneutralization test. Results: The 212 serum samples were collected in 7 counties from 87 (41.0%) Olive baboons, 69 (32.5%) Vervet monkeys, and 49 (23.1%) Sykes monkeys. Half (50.9%) were male and 56.4% were adult. We detected ZIKV antibodies in 38 (17.9%; 95% confidence interval: 13.3-23.6) samples. Conclusions: These results suggest ZIKV transmission and potential maintenance in nature by NHPs in Kenya.


Subject(s)
Zika Virus Infection , Zika Virus , Male , Chlorocebus aethiops , Animals , Female , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Kenya/epidemiology , Primates , Antibodies, Neutralizing , Antibodies, Viral
9.
Vector Borne Zoonotic Dis ; 22(12): 600-605, 2022 12.
Article in English | MEDLINE | ID: mdl-36399688

ABSTRACT

Background: The first Zika virus outbreak in U.S. Virgin Islands identified 1031 confirmed noncongenital Zika disease (n = 967) and infection (n = 64) cases during January 2016-January 2018; most cases (89%) occurred during July-December 2016. Methods and Results: The epidemic followed a continued point-source outbreak pattern. Evaluation of sociodemographic risk factors revealed that estates with higher unemployment, more houses connected to the public water system, and more newly built houses were significantly less likely to have Zika virus disease and infection cases. Increased temperature was associated with higher case counts, which suggests a seasonal association of this outbreak. Conclusion: Vector surveillance and control measures are needed to prevent future outbreaks.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary
10.
Vector Borne Zoonotic Dis ; 22(10): 520-526, 2022 10.
Article in English | MEDLINE | ID: mdl-36255416

ABSTRACT

Objective: The objective of this work was to adapt a diagnostic kit developed for humans to identify Dengue (DENV1, DENV2, DENV3, DENV4), Zika (ZIKV) and Chikungunya virus (CHIKV) in females of Aedes aegypti and Aedes albopictus and to verify if the occurrence of mosquitoes infected with these three arboviruses are being found in regions with high occurrence of these diseases in humans. Materials and Methods: For this purpose, live mosquitoes were captured between January and June 2020 using 3,476 traps permanently installed in the field were used. After capture, the species were identified, then the females were placed in a pool of 2 to 10 specimens and sent to the laboratory for detection of DENV1, DENV2, DENV3, DENV4, ZIKV and CHIKV by RT-PCR using a commercial human kit for arboviruses. Results: Of the 76 mosquito pools collected, six (7.9%) pools tested positive for the DENV2 virus. The DENV-positive mosquitoes were collected in regions with a high incidence of reported cases of Dengue or in adjacent areas. Conclusion: The absence of kits for the detection of these arboviruses in Aedes is a limiting factor and the adequacy of commercial kits, already used for the diagnosis of arboviruses in humans, the results presented demonstrate that it is possible to identify the presence of DENV2 in mosquitoes with the respective kit, reinforcing the use of RT-qPCR as a robust diagnostic tool for epidemiological surveillance allowing managers to receive timely results for decision-making regarding prevention and control actions.


Subject(s)
Aedes , Arboviruses , Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Female , Humans , Animals , Zika Virus/genetics , Chikungunya virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary , Chikungunya Fever/diagnosis , Chikungunya Fever/epidemiology , Chikungunya Fever/veterinary , Brazil/epidemiology , Public Health , Argentina , Paraguay , Dengue Virus/genetics , Mosquito Vectors , Dengue/epidemiology , Dengue/veterinary
11.
J Wildl Dis ; 58(4): 939-942, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36136588

ABSTRACT

The range of nonhuman primate (NHP) species involved in Zika virus (ZIKV) sylvatic transmission is not known. We tested 97 NHP archived sera, collected from 2006 to 2016 in Rwandan National Parks, for neutralizing antibodies to ZIKV. Serum from one olive baboon (Papio anubis) was positive for ZIKV antibodies.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Zika Virus Infection/veterinary , Rwanda/epidemiology
12.
Vector Borne Zoonotic Dis ; 22(9): 472-477, 2022 09.
Article in English | MEDLINE | ID: mdl-35969371

ABSTRACT

Objectives: In regions with co-existing flaviviruses, the diagnosis of previous West Nile virus (WNV) infections is challenging due to cross-reacting antibodies. The aim of the study was to determine the frequency of previous WNV infections in sera from three Sudanese states by excluding potentially dengue virus (DENV) and ZIKV cross-reacting sera and to determine the percentage of WNV cross-neutralizing sera from individuals with previous DENV infection. Methods: Serum samples from Kassala, North Kordofan, and Red Sea state were screened for antibodies against DENV by ELISA. Sera without DENV antibodies (N = 106) and a matched set of sera with DENV antibodies (N = 108) was selected. In all blood samples the frequency of WNV-neutralizing antibodies and the antibody titers were measured with microplate neutralization assays. DENV and Zika virus (ZIKV) microplate neutralization assays were performed with all WNV neutralizing sera of the DENV negative group. Results: A fraction of 30.2% of the DENV antibody negative sera neutralized WNV. The seroprevalence increased with age from 9.5% to 41.7%. Men and women were equally affected. The percentage of DENV positive sera that neutralized WNV was 83.3%. DENV positive sera had higher WNV neutralization titers than DENV negative sera. Conclusions: A significant fraction of the DENV antibody negative sera from three regions in Sudan showed serologic evidence of previous WNV infection. In comparison, the large majority of DENV antibody positive sera had WNV neutralizing antibodies. Studies are needed to identify clinical cases of WNV infection and to determine whether individuals with cross-neutralizing antibodies are protected from WNV disease.


Subject(s)
Dengue Virus , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Female , Humans , Seroepidemiologic Studies , Sudan/epidemiology , West Nile Fever/epidemiology , West Nile Fever/veterinary , Zika Virus Infection/veterinary
13.
Transbound Emerg Dis ; 69(5): e2516-e2529, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35544742

ABSTRACT

The emergence of Zika virus (ZIKV) infection, which is unexpectedly associated with congenital defects, has prompted the development of safe and effective vaccines. The Gram-positive enhancer matrix-protein anchor (GEM-PA) display system has emerged as a versatile and highly effective platform for delivering target proteins in vaccines. In this study, we developed a bacterium-like particle vaccine, ZI-△-PA-GEM, based on the GEM-PA system. The fusion protein ZI-△-PA, which contains the prM-E-△TM protein of ZIKV (with a stem-transmembrane region deletion) and the protein anchor PA3, was expressed. The fusion protein was successfully displayed on the GEM surface to form ZI-△-PA-GEM. Moreover, the intramuscular immunization of BALB/c mice with ZI-△-PA-GEM combined with ISA 201 VG and poly(I:C) adjuvants induced durable ZIKV-specific IgG and protective neutralizing antibody responses. Potent B-cell/DC activation was also stimulated early after immunization. Notable, splenocyte proliferation, the secretion of multiple cytokines, T/B-cell activation and central memory T-cell responses were elicited. These data indicate that ZI-△-PA-GEM is a promising bacterium-like particle vaccine candidate for ZIKV.


Subject(s)
Rodent Diseases , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Immunity , Immunoglobulin G , Mice , Mice, Inbred BALB C , Viral Envelope Proteins , Viral Proteins , Zika Virus Infection/prevention & control , Zika Virus Infection/veterinary
14.
Vector Borne Zoonotic Dis ; 22(4): 252-262, 2022 04.
Article in English | MEDLINE | ID: mdl-35404115

ABSTRACT

Background: Emergence of mosquito-borne arboviruses has caused significant public health burden. The life cycle of arboviruses comprises sylvatic and urban cycles, including a wildlife reservoir, a human host, and an arthropod vector. However, many questions remain on the sylvatic cycles of arboviruses. In this study, we investigate the prevalence of IgG antibodies to arboviruses of public health importance in African bats. Material and Methods: We collected dried blood spots from bats in Cameroon, Guinea, and the Democratic Republic of the Congo (DRC). To detect IgG antibodies to 10 antigens of 6 arboviruses (Dengue, Zika, West Nile, Usutu, Chikungunya, and O'nyong nyong viruses), we adapted a previously validated multiplex detection assay based on the Luminex technology. Results: We tested samples from 2579 bats, representing 1917 frugivorous and 641 insectivorous bats distributed in 7 families and 21 species. Overall, 218/2579 (8.45%) bat samples reacted with at least 1 of the 10 antigens tested. The highest prevalence was observed against Usutu virus with 2.3% (59/2579), followed by 1.9% (49/2579) and 1.35% (35/2579) for the Dengue virus serotypes 4 and 3, respectively. The global seroprevalence varied by country and collection site: 11% (151/1376) in Cameroon, 3.5% (20/565) in DRC, and 7.3% (47/638) in Guinea. The highest rates were observed in Hypsignathus monstrosus (17.9%), Rousettus aegyptiacus (16.4%), and Eidolon helvum (10.7%), and in species from the insectivorous Molossidae family (7.8-8.9%). Finally, we observed changes in seroprevalence over the year in E. helvum and H. monstrosus colonies, which could be related to population structure. Conclusion: On more than 2500 bat samples tested, we showed variable IgG seroprevalences against multiple arboviruses. Overall, the prevalence of IgG antibodies of 8.45% against arboviruses found in bats suggest that they could play a role in arboviruses cycles in the wild, in addition to other animal species.


Subject(s)
Arboviruses , Chiroptera , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Cameroon/epidemiology , Democratic Republic of the Congo/epidemiology , Guinea , Humans , Immunoglobulin G , Mosquito Vectors , Seroepidemiologic Studies , Zika Virus Infection/veterinary
15.
Transbound Emerg Dis ; 69(4): e1160-e1171, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34821477

ABSTRACT

Arboviruses (arthropod-borne viruses) are expanding their geographic range, posing significant health threats to millions of people worldwide. This expansion is associated with efficient and suitable vector availability. Apart from the well-known Aedes aegypti and Ae. albopictus, other Aedes species may potentially promote the geographic spread of arboviruses because these viruses have similar vector requirements. Aedes japonicus, Ae. vexans and Ae. vittatus are a growing concern, given their potential and known vector competence for several arboviruses including dengue, chikungunya, and Zika viruses. In the present study, we developed detailed maps of their global potential distributions under both current and future (2050) climate conditions, using an ecological niche modeling approach (Maxent). Under present-day conditions, Ae. japonicus and Ae. vexans have suitable areas in the northeastern United States, across Europe and in southeastern China, whereas the tropical regions of South America, Africa and Asia are more suitable for Ae. vittatus. Future scenarios anticipated range changes for the three species, with each expected to expand into new areas that are currently not suitable. By 2050, Ae. japonicus will have a broader potential distribution across much of Europe, the United States, western Russia and central Asia. Aedes vexans may be able to expand its range, especially in Libya, Egypt and southern Australia. For Ae. vittatus, future projections indicated areas at risk in sub-Saharan Africa and the Middle East. As such, these species deserve as much attention as Ae. aegypti and Ae. albopictus when processing arboviruses risk assessments and our findings may help to better understand the potential distribution of each species.


Subject(s)
Aedes , Arboviruses , Zika Virus Infection , Zika Virus , Animals , Climate Change , Ecosystem , Humans , Mosquito Vectors , Zika Virus Infection/veterinary
16.
Vector Borne Zoonotic Dis ; 21(11): 884-891, 2021 11.
Article in English | MEDLINE | ID: mdl-34652234

ABSTRACT

We conducted serologic surveillance for flaviviruses and orthobunyaviruses in vertebrate animals in Mexico in 2018-2019. Sera were collected from 856 vertebrate animals, including 323 dogs, 223 horses, and 121 cows, from 16 species. The animals were from 3 states: Chihuahua in northwest Mexico (704 animals) and Guerrero and Michoacán on the Pacific Coast (27 and 125 animals, respectively). Sera were assayed by plaque reduction neutralization test using four flaviviruses (dengue type 2, St. Louis encephalitis, West Nile, and Zika viruses) and six orthobunyaviruses from the Bunyamwera (BUN) serogroup (Cache Valley, Lokern, Main Drain, Northway, Potosi, and Tensaw viruses). Antibodies to West Nile virus (WNV) were detected in 154 animals of 9 species, including 89 (39.9%) horses, 3 (21.4%) Indian peafowl, and 41 (12.7%) dogs. Antibodies to St. Louis encephalitis virus (SLEV) were detected in seven animals, including three (0.9%) dogs. Antibodies to Lokern virus (LOKV) were detected in 22 animals: 19 (8.5%) horses, 2 (1.7%) cows, and a dog (0.3%). Antibodies to Main Drain virus (MDV) were detected in three (1.3%) horses. WNV and LOKV activity was detected in all three states, SLEV activity was detected in Chihuahua and Michoacán, and MDV activity was detected in Chihuahua. None of the animals was seropositive for Cache Valley virus, the most common and widely distributed BUN serogroup virus in North America. In conclusion, we provide serologic evidence that select flaviviruses and BUN serogroup viruses infect vertebrate animals in Chihuahua, Guerrero, and Michoacán. We also provide the first evidence of LOKV and MDV activity in Mexico.


Subject(s)
Cattle Diseases , Dog Diseases , Encephalitis, St. Louis , Horse Diseases , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Cattle , Dogs , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/epidemiology , Encephalitis, St. Louis/veterinary , Female , Horse Diseases/epidemiology , Horses , Mexico/epidemiology , Vertebrates , West Nile Fever/epidemiology , West Nile Fever/veterinary , Zika Virus Infection/veterinary
17.
Front Immunol ; 12: 719810, 2021.
Article in English | MEDLINE | ID: mdl-34394129

ABSTRACT

The maternal decidua is an immunologically complex environment that balances maintenance of immune tolerance to fetal paternal antigens with protection of the fetus against vertical transmission of maternal pathogens. To better understand host immune determinants of congenital infection at the maternal-fetal tissue interface, we performed a comparative analysis of innate and adaptive immune cell subsets in the peripheral blood and decidua of healthy rhesus macaque pregnancies across all trimesters of gestation and determined changes after Zika virus (ZIKV) infection. Using one 28-color and one 18-color polychromatic flow cytometry panel we simultaneously analyzed the frequency, phenotype, activation status and trafficking properties of αß T, γδ T, iNKT, regulatory T (Treg), NK cells, B lymphocytes, monocytes, macrophages, and dendritic cells (DC). Decidual leukocytes showed a striking enrichment of activated effector memory and tissue-resident memory CD4+ and CD8+ T lymphocytes, CD4+ Tregs, CD56+ NK cells, CD14+CD16+ monocytes, CD206+ tissue-resident macrophages, and a paucity of B lymphocytes when compared to peripheral blood. t-distributed stochastic neighbor embedding (tSNE) revealed unique populations of decidual NK, T, DC and monocyte/macrophage subsets. Principal component analysis showed distinct spatial localization of decidual and circulating leukocytes contributed by NK and CD8+ T lymphocytes, and separation of decidua based on gestational age contributed by memory CD4+ and CD8+ T lymphocytes. Decidua from 10 ZIKV-infected dams obtained 16-56 days post infection at third (n=9) or second (n=1) trimester showed a significant reduction in frequency of activated, CXCR3+, and/or Granzyme B+ memory CD4+ and CD8+ T lymphocytes and γδ T compared to normal decidua. These data suggest that ZIKV induces local immunosuppression with reduced immune recruitment and impaired cytotoxicity. Our study adds to the immune characterization of the maternal-fetal interface in a translational nonhuman primate model of congenital infection and provides novel insight in to putative mechanisms of vertical transmission.


Subject(s)
Host-Pathogen Interactions/immunology , Maternal-Fetal Exchange/immunology , Monkey Diseases/etiology , Monkey Diseases/metabolism , Zika Virus Infection/veterinary , Zika Virus/immunology , Animals , Decidua/immunology , Decidua/metabolism , Disease Susceptibility , Female , Immunohistochemistry , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocyte Count , Macaca mulatta , Monkey Diseases/pathology , Monkey Diseases/transmission , Pregnancy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
18.
Vector Borne Zoonotic Dis ; 21(10): 731-746, 2021 10.
Article in English | MEDLINE | ID: mdl-34424778

ABSTRACT

Emerging mosquito-borne viruses continue to cause serious health problems and economic burden among billions of people living in and near the tropical belt of the world. The highly invasive mosquito species Aedes aegypti and Aedes albopictus have successively invaded and expanded their presence as key vectors of Chikungunya virus, dengue virus, yellow fever virus, and Zika virus, and that has consecutively led to frequent outbreaks of the corresponding viral diseases. Of note, these two mosquito species have gradually adapted to the changing weather and environmental conditions leading to a shift in the epidemiology of the viral diseases, and facilitated their establishment in new ecozones inhabited by immunologically naive human populations. Many abilities of Ae. aegypti and Ae. albopictus, as vectors of significant arbovirus pathogens, may affect the infection and transmission rates after a bloodmeal, and may influence the vector competence for either virus. We highlight that many collaborating risk factors, for example, the global transportation systems may result in sporadic and more local outbreaks caused by mosquito-borne viruses related to Ae. aegypti and/or Ae. albopictus. Those local outbreaks could in synergy grow and produce larger epidemics with pandemic characters. There is an urgent need for improved surveillance of vector populations, human cases, and reliable prediction models. In summary, we recommend new and innovative strategies for the prevention of these types of infections.


Subject(s)
Aedes , Arboviruses , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/veterinary
19.
Vector Borne Zoonotic Dis ; 21(10): 817-821, 2021 10.
Article in English | MEDLINE | ID: mdl-34292777

ABSTRACT

West Nile virus (WNV) and Zika virus (ZIKV) are mosquito-borne viruses in the family Flaviviridae. Residents in, and travelers to, areas where the viruses are circulating are at risk for infection, and both viruses can cause an acute febrile illness. Given known cross-reactivity in flavivirus serologic assays, it is possible a patient with acute WNV infection could be misdiagnosed as having ZIKV infection if appropriate testing is not conducted. To understand how frequently persons with WNV infection have detectable cross-reactive ZIKV immunoglobulin M (IgM) antibody, we used archived serum samples from patients in the United States with recent WNV infection confirmed by a microsphere-based immunoassay test for IgM antibody and neutralizing antibody testing. Samples were tested for ZIKV IgM antibody with the Centers for Disease Control and Prevention (CDC) ZIKV IgM antibody capture enzyme-linked immunosorbent assay. Among 153 sera from patients with acute WNV infection, the ZIKV IgM antibody result was positive in 56 (37%; 95% confidence interval [CI] 29-44%) and equivocal in 28 (18%; 95% CI 13-25%). With 55% of samples having cross-reactive antibodies, it is important for health care providers to request appropriate testing based on the most likely cause of a patient's possible arboviral infection considering their clinical symptoms and signs, travel history, and place of residence. For cases where the epidemiology does not support the preliminary IgM findings, confirmatory neutralizing antibody testing should be performed. These measures will avoid an incorrect diagnosis of ZIKV infection, based on cross-reactive antibodies, in a person truly infected with WNV.


Subject(s)
West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/veterinary , Immunoglobulin M , West Nile Fever/diagnosis , West Nile Fever/epidemiology , West Nile Fever/veterinary , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus Infection/veterinary
20.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34176326

ABSTRACT

The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19/diagnosis , Synthetic Biology/methods , Wearable Electronic Devices , Zika Virus Infection/veterinary , Zoonoses/diagnosis , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Biomarkers/analysis , Cell Engineering/methods , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Point-of-Care Testing , Zika Virus Infection/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...