Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 708
Filter
1.
BMC Med Genomics ; 17(1): 153, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840097

ABSTRACT

BACKGROUND: Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS: Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS: It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS: Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.


Subject(s)
Anoikis , Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , Zinc Finger E-box Binding Homeobox 2 , Zinc Finger E-box-Binding Homeobox 1 , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/immunology , Zinc Finger E-box-Binding Homeobox 1/genetics , Prognosis , Anoikis/genetics , Biomarkers, Tumor/genetics , MicroRNAs/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Gene Expression Regulation, Neoplastic , Male , Female , Kaplan-Meier Estimate
2.
Cell Death Dis ; 15(5): 378, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816356

ABSTRACT

Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality worldwide. Understanding the dysregulated epigenetics governing LUAD progression is pivotal for identifying therapeutic targets. CBX4, a chromobox protein, is reported to be upregulated in LUAD. This study highlights the dual impact of CBX4 on LUAD proliferation and metastasis through a series of rigorous in vitro and in vivo experiments. Further investigation into the underlying mechanism through high-throughput ChIP-seq and RNA-seq reveals that CBX4 functions in promoting LUAD proliferation via upregulating PHGDH expression and subsequent serine biosynthesis, while concurrently suppressing LUAD metastasis by inhibiting ZEB2 transcription. CBX4 facilitates PHGDH transcription through the interaction with GCN5, inducing heightened histone acetylation on the PHGDH promoter. Simultaneously, the inhibition of ZEB2 transcription involves CBX4-mediated recruitment of canonical PRC1 (cPRC1), establishing H2K119ub on the ZEB2 promoter. These findings underscore CBX4's pivotal role as a regulator of LUAD progression, emphasizing its diverse transcriptional regulatory functions contingent upon interactions with specific epigenetic partners. Understanding the nuanced interplay between CBX4 and epigenetic factors sheds light on potential therapeutic avenues in LUAD.


Subject(s)
Adenocarcinoma of Lung , Disease Progression , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Mice , Cell Proliferation/genetics , Cell Line, Tumor , Mice, Nude , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Promoter Regions, Genetic/genetics , Transcription, Genetic , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , A549 Cells , Ligases
3.
Cell Death Dis ; 15(5): 322, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719798

ABSTRACT

Metastatic dissemination from the primary tumor is a complex process that requires crosstalk between tumor cells and the surrounding milieu and involves the interplay between numerous cellular-signaling programs. Epithelial-mesenchymal transition (EMT) remains at the forefront of orchestrating a shift in numerous cellular programs, such as stemness, drug resistance, and apoptosis that allow for successful metastasis. Till date, there is limited success in therapeutically targeting EMT. Utilizing a high throughput screen of FDA-approved compounds, we uncovered a novel role of the topoisomerase inhibitor, Teniposide, in reversing EMT. Here, we demonstrate Teniposide as a potent modulator of the EMT program, specifically through an IRF7-NMI mediated response. Furthermore, Teniposide significantly reduces the expression of the key EMT transcriptional regulator, Zinc Finger E-Box Binding Homeobox 2 (ZEB2). ZEB2 downregulation by Teniposide inhibited RNA polymerase I (Pol I) activity and rRNA biogenesis. Importantly, Teniposide treatment markedly reduced pulmonary colonization of breast cancer cells. We have uncovered a novel role of Teniposide, which when used at a very low concentration, mitigates mesenchymal-like invasive phenotype. Overall, its ability to target EMT and rRNA biogenesis makes Teniposide a viable candidate to be repurposed as a therapeutic option to restrict breast cancer metastases.


Subject(s)
Breast Neoplasms , Down-Regulation , Epithelial-Mesenchymal Transition , RNA Polymerase I , Teniposide , Zinc Finger E-box Binding Homeobox 2 , Epithelial-Mesenchymal Transition/drug effects , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Cell Line, Tumor , Down-Regulation/drug effects , RNA Polymerase I/metabolism , Teniposide/pharmacology , Animals , Mice , Gene Expression Regulation, Neoplastic/drug effects
5.
Eur J Med Res ; 29(1): 226, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610009

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are critical regulators in the progression of tumors. This experimental design aimed to explore the mechanism of circ-10720 in non-small cell lung cancer (NSCLC). METHODS: We used RT-qPCR to measure circ-10720 expression in clinical samples and analyzed its relationship with the clinicopathological characteristics of NSCLC patients. The expression levels of microRNA-1238 (miR-1238) and Zinc Finger E-box-binding Homeobox 2 (ZEB2) in clinical samples were detected by RT-qPCR. NSCLC cells were transfected with relevant plasmids or sequences. Circ-10720, miR-1238, and ZEB2 expressions in cells were analyzed via RT-qPCR or western blot. Cell proliferation, apoptosis, migration, and invasion were assessed with CCK-8, flow cytometry, and transwell assay, respectively. The protein expression of ZEB2 and epithelial-mesenchymal transition (EMT)-related markers (E-cadherin, Vimentin, N-cadherin) were detected via western blot. Xenograft assay was used to determine the effect of circ-10720 on NSCLC in vivo. Circ-10720 and ZEB2 expressions in tumors were detected using RT-qPCR or Western blot. Immunohistochemistry was used to evaluate E-cadherin and N-cadherin expression in tumors. Finally, the binding relationship between miR-1238 with circ-10720 or ZEB2 was verified by the bioinformatics website, dual luciferase reporter assay, RNA pull-down assay, and RIP assay. RESULTS: Circ-10720 was upregulated in NSCLC and correlated with TNM stage of NSCLC patients. MiR-1238 was lowly expressed but ZEB2 was highly expressed in NSCLC. Circ-10720 silencing suppressed the proliferation, metastasis, and EMT of NSCLC cells. Mechanically, circ-10720 was a competitive endogenous RNA (ceRNA) for miR-1238, and ZEB2 was a target of miR-1238. circ-10720-modulated ZEB2 via competitively binding with miR-1238 to control NSCLC progression. In addition, circ-10720 knockdown suppressed tumor growth in vivo. CONCLUSIONS: Circ-10720 acts as a ceRNA to adsorb miR-1238 and modulate ZEB2 to facilitate the proliferation, migration, invasion, and EMT of NSCLC cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Cadherins , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial-Mesenchymal Transition/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Competitive Endogenous , Zinc Finger E-box Binding Homeobox 2/genetics , RNA, Circular
6.
Cell Cycle ; 23(5): 537-554, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38662954

ABSTRACT

Cholesteatoma is a common disease of the middle ear. Currently, surgical removal is the only treatment option and patients face a high risk of relapse. The molecular basis of cholesteatoma remains largely unknown. Here, we show that Osteopontin (OPN), a predominantly secreted protein, plays a crucial role in the development of middle ear cholesteatoma. Global transcriptome analysis revealed the loss of epithelial features and an enhanced immune response in human cholesteatoma tissues. Quantitative RT-PCR and immunohistochemical staining of middle ear cholesteatoma validated the reduced expression of epithelial markers, as well as the elevated expression of mesenchymal markers including Vimentin and Fibronectin, but not N-Cadherin, α-smooth muscle actin (α-SMA) or ferroptosis suppressor protein 1 (FSP1), indicating a partial epithelial-mesenchymal transition (EMT) state. Besides, the expression of OPN was significantly elevated in human cholesteatoma tissues. Treatment with OPN promoted cell proliferation, survival and migration and led to a partial EMT in immortalized human keratinocyte cells. Importantly, blockade of OPN signaling could remarkably improve the cholesteatoma-like symptoms in SD rats. Our mechanistic study demonstrated that the AKT-zinc finger E-box binding homeobox 2 (ZEB2) axis mediated the effects of OPN. Overall, these findings suggest that targeting the OPN signaling represents a promising strategy for the treatment of middle ear cholesteatoma.


Subject(s)
Cell Proliferation , Cholesteatoma, Middle Ear , Epithelial-Mesenchymal Transition , Osteopontin , Rats, Sprague-Dawley , Epithelial-Mesenchymal Transition/genetics , Humans , Osteopontin/metabolism , Osteopontin/genetics , Animals , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Cholesteatoma, Middle Ear/genetics , Rats , Cell Proliferation/genetics , Cell Movement/genetics , Signal Transduction , Male , Proto-Oncogene Proteins c-akt/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Female
7.
Immunol Cell Biol ; 102(4): 229-231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525813

ABSTRACT

Age-associated B cells (ABCs) are a stable subset of memory B lymphocytes that develop during microbial infections and in autoimmune diseases. Despite growing appreciation of their phenotypic and functional characteristics, the transcriptional networks involved in ABC fate commitment and maintenance have remained elusive. In their recent publication, Dai et al. tackle this problem, leveraging both mouse models and human diseases to reveal zinc finger E-box-binding homeobox 2 (ZEB2) as a key transcriptional regulator of ABC lineage specification. In aggregate, their results show that ZEB2, a member of the zinc finger E homeobox binding family, promotes ABC differentiation by repressing alternative differentiative fates and targeting genes important for ABC character and function. Moreover, their results strengthen the case for causal links between ABC fate and function in autoimmune pathologies.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Zinc Finger E-box Binding Homeobox 2 , Animals , Humans , Mice , Cell Differentiation , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
8.
Gene ; 912: 148365, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38485033

ABSTRACT

BACKGROUND: Hirschsprung's-associated enterocolitis (HAEC) is a prevalent complication of Hirschsprung's disease (HSCR). Zinc finger E-box binding homeobox 2 (ZEB2) and Notch-1/Jagged-2 are dysregulated in HSCR, but their role in HAEC progression remains poorly understood. We aimed to explore the role and underlying mechanism of enteric neural precursor cells (ENPCs) and the ZEB2/Notch-1/Jagged-2 pathway in HAEC development. METHODS: Colon tissues were collected from HSCR and HAEC patients. ENPCs were isolated from the HAEC group and stimulated by lipopolysaccharide (LPS). The expressions of ZEB2/Notch-1/Jagged-2 were measured using RT-qPCR and Western blot. Immunofluorescence and cell counting kit-8 assays were performed to assess the differentiation and proliferation of ENPCs. Inflammatory factors were measured by ELISA kits. Co-immunoprecipitation and bioinformatic analysis were used to explore the interaction between ZEB2 and Notch-1. Small interfering RNA and overexpression vectors were used to investigate the role and mechanism of ZEB2 and Notch-1 in regulating ENPCs' proliferation and differentiation during HAEC progression. RESULTS: We observed increased LPS in the colon tissues of HAEC, with downregulated ZEB2 expression and upregulated Notch-1/Jagged-2 expression. ZEB2 interacts with Notch-1. LPS treatment downregulated ZEB2 expression, upregulated Notch-1/Jagged-2 expression, and induced proliferation and differentiation disorders in ENPCs, which were reversed by the knockdown of Notch-1. Furthermore, overexpression of ZEB2 inhibited Notch-1/Jagged-2 signaling and ameliorated inflammation and dysfunction in LPS-induced ENPCs. Notch-1 overexpression enhanced LPS-induced dysfunction, but this effect was antagonized by the overexpression of ZEB2. CONCLUSION: Overexpression of ZEB2 ameliorates LPS-induced ENPCs' dysfunction via the Notch-1/Jagged-2 pathway, thus playing a role in HAEC.


Subject(s)
Enterocolitis , Hirschsprung Disease , Neural Stem Cells , Humans , Cell Proliferation , Colon/metabolism , Enterocolitis/complications , Enterocolitis/metabolism , Hirschsprung Disease/genetics , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Neural Stem Cells/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
9.
Int J Mol Sci ; 25(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474085

ABSTRACT

Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.


Subject(s)
Facies , Hirschsprung Disease , Intellectual Disability , Microcephaly , Repressor Proteins , Female , Humans , Child, Preschool , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Intellectual Disability/genetics , Homeodomain Proteins/genetics , Transcription Factors
10.
Sci Immunol ; 9(93): eadj4748, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38330097

ABSTRACT

CD11c+ atypical B cells (ABCs) are an alternative memory B cell lineage associated with immunization, infection, and autoimmunity. However, the factors that drive the transcriptional program of ABCs have not been identified, and the function of this population remains incompletely understood. Here, we identified candidate transcription factors associated with the ABC population based on a human tonsillar B cell single-cell dataset. We identified CD11c+ B cells in mice with a similar transcriptomic signature to human ABCs, and using an optimized CRISPR-Cas9 knockdown screen, we observed that loss of zinc finger E-box binding homeobox 2 (Zeb2) impaired ABC formation. Furthermore, ZEB2 haplo-insufficient Mowat-Wilson syndrome (MWS) patients have decreased circulating ABCs in the blood. In Cd23Cre/+Zeb2fl/fl mice with impaired ABC formation, ABCs were dispensable for efficient humoral responses after Plasmodium sporozoite immunization but were required to control recrudescent blood-stage malaria. Immune phenotyping revealed that ABCs drive optimal T follicular helper (TFH) cell formation and germinal center (GC) responses and they reside at the red/white pulp border, likely permitting better access to pathogen antigens for presentation. Collectively, our study shows that ABC formation is dependent on Zeb2, and these cells can limit recrudescent infection by sustaining GC reactions.


Subject(s)
Germinal Center , Persistent Infection , Animals , Humans , Mice , Immunization , Vaccination , Zinc Finger E-box Binding Homeobox 2/genetics
11.
Sci Immunol ; 9(93): eadk1643, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38330141

ABSTRACT

Aging is a significant risk factor for autoimmunity, and many autoimmune diseases tend to onset during adulthood. We conducted an extensive analysis of CD4+ T cell subsets from 354 patients with autoimmune disease and healthy controls via flow cytometry and bulk RNA sequencing. As a result, we identified a distinct CXCR3midCD4+ effector memory T cell subset that expands with age, which we designated "age-associated T helper (THA) cells." THA cells exhibited both a cytotoxic phenotype and B cell helper functions, and these features were regulated by the transcription factor ZEB2. Consistent with the highly skewed T cell receptor usage of THA cells, gene expression in THA cells from patients with systemic lupus erythematosus reflected disease activity and was affected by treatment with a calcineurin inhibitor. Moreover, analysis of single-cell RNA sequencing data revealed that THA cells infiltrate damaged organs in patients with autoimmune diseases. Together, our characterization of THA cells may facilitate improved understanding of the relationship between aging and autoimmune diseases.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Adult , Autoimmunity , T-Lymphocytes, Helper-Inducer , T-Lymphocyte Subsets , Zinc Finger E-box Binding Homeobox 2/metabolism
13.
Stem Cell Res ; 76: 103333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38350246

ABSTRACT

ZEB2 is a protein-coding gene belonging to a very restricted family of transcription factors. ZEB2 acts mainly as a transcription repressor, is expressed in various tissues and its role is fundamental for the correct development of the nervous system. The best-known clinical picture associated with ZEB2 mutations is Mowat-Wilson syndrome, caused mostly by haploinsufficiency and characterized by possible multi-organ malformations, dysmorphic features, intellectual disability, and epilepsy. In this study we report the generation of IGGi004-A and IGGi005-A, iPSC clones from two patients carrying different heterozygous mutations in ZEB2, which can be used for disease modelling, pathophysiological studies and therapeutics testing.


Subject(s)
Facies , Hirschsprung Disease , Induced Pluripotent Stem Cells , Intellectual Disability , Microcephaly , Humans , Intellectual Disability/complications , Zinc Finger E-box Binding Homeobox 2/genetics , Mutation/genetics , Transcription Factors/genetics , Homeodomain Proteins/genetics
14.
Eur J Hum Genet ; 32(6): 619-629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351292

ABSTRACT

Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.


Subject(s)
DNA Methylation , Facies , Hirschsprung Disease , Homeodomain Proteins , Intellectual Disability , Microcephaly , Repressor Proteins , Zinc Finger E-box Binding Homeobox 2 , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Microcephaly/genetics , Microcephaly/diagnosis , Microcephaly/pathology , Hirschsprung Disease/genetics , Hirschsprung Disease/diagnosis , Hirschsprung Disease/pathology , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Female , Male , Child , Child, Preschool , Adolescent , CpG Islands
15.
Nat Rev Rheumatol ; 20(3): 138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332243
16.
Cell Signal ; 116: 111062, 2024 04.
Article in English | MEDLINE | ID: mdl-38242271

ABSTRACT

IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Zinc Finger E-box Binding Homeobox 2/metabolism , I-kappa B Kinase/metabolism
17.
Science ; 383(6681): 413-421, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271512

ABSTRACT

Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.


Subject(s)
Autoimmunity , B-Lymphocytes , Cell Differentiation , Gene Expression Regulation , Lupus Erythematosus, Systemic , Zinc Finger E-box Binding Homeobox 2 , Animals , Humans , Mice , Autoimmunity/genetics , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism , Haploinsufficiency , Aging/immunology , Disease Models, Animal , Female
18.
Cell Cycle ; 23(1): 70-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273425

ABSTRACT

Our previous findings confirmed the high enrichment of Bacteroides fragilis (BF) in fecal samples from patients with colorectal cancer (CRC). The intestinal mucosal barrier is the first defense of the organism against commensal flora and intestinal pathogens and is closely associated with the occurrence and development of CRC. Therefore, this study aimed to investigate the molecular mechanisms through which BF mediates intestinal barrier injury and CRC progression. SW480 cells and a Caco2 intestinal barrier model were treated with entero-toxigenic BF (ETBF), its enterotoxin (B. fragilis toxin, BFT), and non-toxigenic BF (NTBF). Cell counting kit-8, flow cytometry, wound healing and transwell assays were performed to analyze the proliferation, apoptosis, migration, and invasion of SW480 cells. Transmission electron microscopy, FITC-dextran, and transepithelial electrical resistance (TEER) were used to analyze damage in the Caco2 intestinal barrier model. The Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) animal model was established to evaluate the effect of ETBF on intestinal barrier injury and CRC progression in vivo. ETBF and BFT enhanced the viability, wound healing ratio, invasion, and EMT of SW480 cells. In addition, ETBF and BFT disrupted the tight junctions and villus structure in the intestinal barrier model, resulting in increased permeability and reduced TEER. Similarly, the expression of intestinal barrier-related proteins (MUC2, Occludin and Zo-1) was restricted by ETBF and BFT. Interestingly, the STAT3/ZEB2 axis was activated by ETBF and BFT, and treatment with Brevilin A (a STAT3 inhibitor) or knockdown of ZEB2 limited the promotional effect of ETBF and BFT on the SW480 malignant phenotype. In vivo experiments also confirmed that ETBF colonization accelerated tumor load, carcinogenesis, and intestinal mucosal barrier damage in the colorectum of the AOM/DSS animal model, and that treatment with Brevilin A alleviated these processes. ETBF-secreted BFT accelerated intestinal barrier damage and CRC by activating the STAT3/ZEB2 axis. Our findings provide new insights and perspectives for the application of ETBF in CRC treatment.


Subject(s)
Bacterial Toxins , Bacteroides fragilis , Colorectal Neoplasms , STAT3 Transcription Factor , Zinc Finger E-box Binding Homeobox 2 , Animals , Humans , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Bacteroides Infections/pathology , Caco-2 Cells , Colorectal Neoplasms/pathology , Crotonates , Sesquiterpenes , STAT3 Transcription Factor/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism
19.
Reprod Sci ; 31(3): 687-696, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814200

ABSTRACT

Preeclampsia (PE) belongs to hypertensive disorder complicating pregnancy, which is a serious obstetric complication. Propofol is a new type of fast and short-acting general anesthetic, which has also been demonstrated to promote the cell growth recently. Therefore, this study was carried out to explore the effects of propofol on the cell growth, migration and invasion in the HTR-8/SVneo cells. The cell biological behaviors were analyzed using CCK-8, EdU, transwell assays. The relationship between METTL3 and ZEB2 was confirmed by RIP assay. Western blot and RT-qPCR assays were carried out to detect the protein and mRNA levels. The results showed that propofol enhanced the cell viability, proliferation, migration and invasion of the HTR-8/SVneo cells. Besides, METTL3 overexpression neutralized the propofol role. Furthermore, METTL3 overexpression elevated the m6A levels of ZEB2 and decreased the mRNA levels and stability of ZEB2. ZEB2 overexpression neutralized the role of METTL3 in the propofol treated HTR-8/SVneo cells. In conclusion, this study demonstrated the effects of propofol on promoting the cell growth, migration and invasion of HTR-8/SVneo cells. Mechanistically, propofol indirectly regulated ZEB2 expression by targeting METTL3 mediated m6A methylation modification.


Subject(s)
MicroRNAs , Pre-Eclampsia , Propofol , Pregnancy , Female , Humans , Propofol/pharmacology , Propofol/metabolism , Trophoblasts/metabolism , Cell Line , Pre-Eclampsia/metabolism , Cell Proliferation , RNA, Messenger/metabolism , Epithelial-Mesenchymal Transition , Cell Movement , MicroRNAs/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...