Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Oncol ; 15(8): 2065-2083, 2021 08.
Article in English | MEDLINE | ID: mdl-33931939

ABSTRACT

Resistance to adjuvant chemotherapy is a major clinical problem in the treatment of colorectal cancer (CRC). The aim of this study was to elucidate the role of an epithelial to mesenchymal transition (EMT)-inducing protein, ZEB2, in chemoresistance of CRC, and to uncover the underlying mechanism. We performed IHC for ZEB2 and association analyses with clinical outcomes on primary CRC and matched CRC liver metastases in compliance with observational biomarker study guidelines. ZEB2 expression in primary tumours was an independent prognostic marker of reduced overall survival and disease-free survival in patients who received adjuvant FOLFOX chemotherapy. ZEB2 expression was retained in 96% of liver metastases. The ZEB2-dependent EMT transcriptional programme activated nucleotide excision repair (NER) pathway largely via upregulation of the ERCC1 gene and other components in NER pathway, leading to enhanced viability of CRC cells upon oxaliplatin treatment. ERCC1-overexpressing CRC cells did not respond to oxaliplatin in vivo, as assessed using a murine orthotopic model in a randomised and blinded preclinical study. Our findings show that ZEB2 is a biomarker of tumour response to chemotherapy and risk of recurrence in CRC patients. We propose that the ZEB2-ERCC1 axis is a key determinant of chemoresistance in CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Epithelial-Mesenchymal Transition/genetics , Transcription, Genetic , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Fluorouracil/therapeutic use , Humans , Leucovorin/therapeutic use , Liver Neoplasms/secondary , Mice , Organoplatinum Compounds/therapeutic use , Xenograft Model Antitumor Assays
2.
Toxicol Appl Pharmacol ; 385: 114769, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31697999

ABSTRACT

Tubulointerstitial fibrosis (TIF) is the main pathologic feature of end-stage renal disease. Epithelial-mesenchymal transition (EMT) of proximal tubular cells (PTCs) is one of the most significant features of TIF. MicroRNAs play critical roles during EMT in TIF. However, whether miRNAs can be used as therapeutic targets in TIF therapy remains undetermined. We found that miR-30e, a member of the miR-30 family, is deregulated in TGF-ß1-induced PTCs, TIF mice and human fibrotic kidney tissues. Moreover, transcription factors that induce EMT, such as snail, slug, and Zeb2, were direct targets of miR-30e. Using a cell-based miR-30e promoter luciferase reporter system, Schisandrin B (Sch B) was selected for the enhancement of miR-30e transcriptional activity. Our results indicate that Sch B can decrease the expression of snail, slug, and Zeb2, thereby attenuating the EMT of PTCs during TIF by upregulating miR-30e, both in vivo and in vitro. This study shows that miR-30e can serve as a therapeutic target in the treatment of patients with TIF and that Sch B may potentially be used in therapy against renal fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Kidney/pathology , Lignans/pharmacology , MicroRNAs/physiology , Polycyclic Compounds/pharmacology , Actins/analysis , Cells, Cultured , Cyclooctanes/pharmacology , Fibrosis/prevention & control , Humans , MicroRNAs/antagonists & inhibitors , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/physiology , Transforming Growth Factor beta1/pharmacology , Ureteral Obstruction/pathology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology
3.
J Neurosci ; 38(6): 1575-1587, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29326173

ABSTRACT

Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that ZEB2 (aka, SIP1 or ZFHX1B), a Mowat-Wilson syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects. In developing Zeb2-mutant cerebella, inward migration of granule neuron progenitors is compromised, the proliferation of glial precursors is reduced, and radial glia fail to differentiate into Bergmann glia in the Purkinje cell layer. In contrast, Zeb2 ablation in granule neuron precursors or oligodendrocyte progenitors does not affect Bergmann glia formation, despite myelination deficits caused by Zeb2 mutation in the oligodendrocyte lineage. Transcriptome profiling identified that ZEB2 regulates a set of Bergmann glia-related genes and FGF, NOTCH, and TGFß/BMP signaling pathway components. Our data reveal that ZEB2 acts as an integral regulator of Bergmann glia formation ensuring maintenance of cerebellar integrity, suggesting that ZEB2 dysfunction in Bergmann gliogenesis might contribute to motor deficits in Mowat-Wilson syndrome.SIGNIFICANCE STATEMENT Bergmann glia are essential for proper cerebellar organization and functional circuitry, however, the molecular mechanisms that control the specification of Bergmann glia remain elusive. Here, we show that transcriptional factor ZEB2 is highly expressed in mature Bergmann glia, but not in cerebellar astrocytes. The mice lacking Zeb2 in cerebellar radial glia, but not oligodendrocyte progenitors or granular neuron progenitors, exhibit severe defects in Bergmann glia formation. The orderly radial scaffolding formed by Bergmann glial fibers critical for cerebellar lamination was not established in Zeb2 mutants, displaying motor behavior deficits. This finding demonstrates a previously unrecognized critical role for ZEB2 in Bergmann glia specification, and points to an important contribution of ZEB2 dysfunction to cerebellar motor disorders in Mowat-Wilson syndrome.


Subject(s)
Cerebellum/cytology , Cerebellum/growth & development , Neurogenesis/genetics , Neurogenesis/physiology , Neuroglia/physiology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Astrocytes/physiology , Cell Count , Cerebellum/physiology , Facies , Gene Expression Profiling , Hirschsprung Disease/genetics , Intellectual Disability/genetics , Locomotion/physiology , Mice , Mice, Transgenic , Microcephaly/genetics , Neural Stem Cells/physiology , Oligodendroglia/physiology , Purkinje Cells/physiology , Transcriptome/physiology
4.
Inflammation ; 41(2): 722-731, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29318479

ABSTRACT

As a transcription factor, zinc finger E-box binding homeobox 2 (ZEB2) includes multiple functional domains which interact with kinds of transcriptional co-effectors. It has been reported that ZEB2 was involved in signal transduction and multiple cellular functions. However, the functional role of ZEB2 in inflammation is still obscure. The aim of the current study is to explore the function of ZEB2 in inflammation cytokine secretion and the role of the nuclear factor-κB (NF-κB) signaling pathway in lipopolysaccharide (LPS)-induced human proximal tubule cell line (HK-2) cells. Our result demonstrated that expression of ZEB2 was significantly downregulated and expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) was upregulated in response to LPS. Meanwhile, knockdown of ZEB2 by transfecting siRNA increased TNF-α and IL-6 secretion. Overexpression of ZEB2 resulted in a decrease of TNF-α and IL-6 secretion in HK-2 cells. Additionally, Western blot analysis indicated that ZEB2 suppressed the activation of the NF-κB signaling pathway via downregulating the levels of phosphorylated p65 and IκBα compared with LPS stimulation. Collectively, our data demonstrated that ZEB2 attenuated LPS-induced inflammation cytokine secretion possibly through suppressing the NF-κB signaling pathway.


Subject(s)
Inflammation , NF-kappa B/metabolism , Zinc Finger E-box Binding Homeobox 2/physiology , Cell Line , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Interleukin-6/metabolism , Kidney Tubules, Proximal/cytology , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism
5.
Nat Commun ; 9(1): 94, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311544

ABSTRACT

Aging imposes a barrier to somatic cell reprogramming through poorly understood mechanisms. Here, we report that fibroblasts from old mice express higher levels of Zeb2, a transcription factor that activates epithelial-to-mesenchymal transition. Synthesis of Zeb2 protein is controlled by a natural antisense transcript named Zeb2-NAT. We show that transfection of adult fibroblasts with specific LNA Gapmers induces a robust downregulation of Zeb2-NAT transcripts and Zeb2 protein and enhances the reprogramming of old fibroblasts into pluripotent cells. We further demonstrate that Zeb2-NAT expression is precociously activated by differentiation stimuli in embryonic stem (ES) cells. By knocking down Zeb2-NAT, we were able to maintain ES cells challenged with commitment signals in the ground state of pluripotency. In conclusion, our study identifies a long noncoding RNA that is overlapping and antisense to the Zeb2 locus as a target for rejuvenation strategies.


Subject(s)
Cellular Reprogramming/genetics , Cellular Senescence/genetics , Fibroblasts/cytology , RNA, Long Noncoding/physiology , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Fibroblasts/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Gene Silencing , Mice , Pluripotent Stem Cells , RNA, Antisense/physiology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology
6.
Proc Natl Acad Sci U S A ; 113(51): 14775-14780, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930303

ABSTRACT

Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.


Subject(s)
Dendritic Cells/cytology , Gene Expression Regulation , Monocytes/cytology , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Bone Marrow/metabolism , CD8-Positive T-Lymphocytes/cytology , Cell Lineage , Cytoplasm/metabolism , Female , Flow Cytometry , Gene Deletion , Gene Expression Profiling , Inflammation , Integrases/metabolism , Male , Mice , Neutrophils/cytology , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...