Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(6): 1860-1876, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30559290

ABSTRACT

The essential metal manganese becomes neurotoxic at elevated levels. Yet, the mechanisms by which brain manganese homeostasis is regulated are unclear. Loss-of-function mutations in SLC30A10, a cell surface-localized manganese efflux transporter in the brain and liver, induce familial manganese neurotoxicity. To elucidate the role of SLC30A10 in regulating brain manganese, we compared the phenotypes of whole-body and tissue-specific Slc30a10 knockout mice. Surprisingly, unlike whole-body knockouts, brain manganese levels were unaltered in pan-neuronal/glial Slc30a10 knockouts under basal physiological conditions. Further, although transport into bile is a major route of manganese excretion, manganese levels in the brain, blood, and liver of liver-specific Slc30a10 knockouts were only minimally elevated, suggesting that another organ compensated for loss-of-function in the liver. Additional assays revealed that SLC30A10 was also expressed in the gastrointestinal tract. In differentiated enterocytes, SLC30A10 localized to the apical/luminal domain and transported intracellular manganese to the lumen. Importantly, endoderm-specific knockouts, lacking SLC30A10 in the liver and gastrointestinal tract, had markedly elevated manganese levels in the brain, blood, and liver. Thus, under basal physiological conditions, brain manganese is regulated by activity of SLC30A10 in the liver and gastrointestinal tract, and not the brain or just the liver. Notably, however, brain manganese levels of endoderm-specific knockouts were lower than whole-body knockouts, and only whole-body knockouts exhibited manganese-induced neurobehavioral defects. Moreover, after elevated exposure, pan-neuronal/glial knockouts had higher manganese levels in the basal ganglia and thalamus than controls. Therefore, when manganese levels increase, activity of SLC30A10 in the brain protects against neurotoxicity.


Subject(s)
Manganese/metabolism , Neurotoxicity Syndromes/prevention & control , Zinc Transporter 8/physiology , Animals , Brain Chemistry , Digestive System/chemistry , Liver/chemistry , Manganese/blood , Mice , Mice, Knockout , Protective Agents/pharmacology , Zinc Transporter 8/deficiency
2.
Metabolism ; 88: 40-50, 2018 11.
Article in English | MEDLINE | ID: mdl-30236453

ABSTRACT

OBJECTIVE: Zinc is intimately involved in testosterone production. Zinc transporter 8 (ZnT8) is found to be localized in insulin secretory granules as a ß-cell specific Zn transporter. The effect of ZnT8 and related zinc accumulation in steroidogenesis, however, is still unknown. The present study aimed to explore whether ZnT8 plays a role in the facilitation of zinc accumulation and regulation of testosterone synthesis in testicles. METHODS: Leydig cells were isolated from the testicles of human, CD-1 suckling and ZnT8-KO mice. Zn accumulation in mitochondria was induced by hCG stimulation. Transfection of hZnT8-EGFP and RNA interfere of mZnT8 were done in MLTC-1 cells. ZnT8 expression and its co-localization with steroidogenic acute regulatory (StAR) protein were analyzed with RT-PCR, Western blot and dual-fluorescent staining protocols. Serum testosterone levels in mice were determined with chemiluminescent enzyme immunoassay. RESULTS: ZnT8 was found to be presented in Leydig cells and up-regulated in suckling mouse Leydig cells and MLTC-1 cells after hCG administration, by which zinc accumulation occurred in mitochondria. ZnT8 gene silencing or knockout inhibited stimulated progesterone and testosterone production, reduced stimulated zinc accumulation and down-regulated phosphorylated steroidogenic acute regulatory (StAR) expression in Leydig cells. Furthermore, an inhibitor (H89) of PKA blocked hCG-stimulated progesterone caused by ZnT8 over-expression and zinc treatment. CONCLUSION: The present study provided the first evidence that ZnT8 transports Zn into Leydig cell mitochondria with gonadotropin stimulation and suggests that ZnT8 may play a role in testosterone production via the PKA signaling pathway.


Subject(s)
Leydig Cells/metabolism , Testosterone/biosynthesis , Zinc Transporter 8/physiology , Zinc/metabolism , Adult , Animals , Cell Line , Chorionic Gonadotropin/pharmacology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Down-Regulation , Humans , Leydig Cells/drug effects , Leydig Cells/enzymology , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Phosphoproteins/metabolism , Phosphorylation , Progesterone/biosynthesis , Zinc Transporter 8/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...