Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.187
Filter
1.
Sci Rep ; 14(1): 10431, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714841

ABSTRACT

Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.


Subject(s)
Common Cold , Pan troglodytes , Animals , Humans , Child , Female , Male , Child, Preschool , Common Cold/epidemiology , Common Cold/virology , Adult , Uganda/epidemiology , Prospective Studies , Zoonoses/epidemiology , Zoonoses/virology , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Ape Diseases/epidemiology , Ape Diseases/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/veterinary , Rhinovirus/isolation & purification , Rhinovirus/genetics , SARS-CoV-2/isolation & purification , Incidence
2.
Sci Rep ; 14(1): 12263, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806576

ABSTRACT

Bacterial zoonoses are diseases caused by bacterial pathogens that can be naturally transmitted between humans and vertebrate animals. They are important causes of non-malarial fevers in Kenya, yet their epidemiology remains unclear. We investigated brucellosis, Q-fever and leptospirosis in the venous blood of 216 malaria-negative febrile patients recruited in two health centres (98 from Ijara and 118 from Sangailu health centres) in Garissa County in north-eastern Kenya. We determined exposure to the three zoonoses using serological (Rose Bengal test for Brucella spp., ELISA for C. burnetti and microscopic agglutination test for Leptospira spp.) and real-time PCR testing and identified risk factors for exposure. We also used non-targeted metagenomic sequencing on nine selected patients to assess the presence of other possible bacterial causes of non-malarial fevers. Considerable PCR positivity was found for Brucella (19.4%, 95% confidence intervals [CI] 14.2-25.5) and Leptospira spp. (1.7%, 95% CI 0.4-4.9), and high endpoint titres were observed against leptospiral serovar Grippotyphosa from the serological testing. Patients aged 5-17 years old had 4.02 (95% CI 1.18-13.70, p-value = 0.03) and 2.42 (95% CI 1.09-5.34, p-value = 0.03) times higher odds of infection with Brucella spp. and Coxiella burnetii than those of ages 35-80. Additionally, patients who sourced water from dams/springs, and other sources (protected wells, boreholes, bottled water, and water pans) had 2.39 (95% CI 1.22-4.68, p-value = 0.01) and 2.24 (1.15-4.35, p-value = 0.02) times higher odds of exposure to C. burnetii than those who used unprotected wells. Streptococcus and Moraxella spp. were determined using metagenomic sequencing. Brucellosis, leptospirosis, Streptococcus and Moraxella infections are potentially important causes of non-malarial fevers in Garissa. This knowledge can guide routine diagnosis, thus helping lower the disease burden and ensure better health outcomes, especially in younger populations.


Subject(s)
Fever , Leptospira , Leptospirosis , Humans , Kenya/epidemiology , Adolescent , Male , Child , Female , Adult , Child, Preschool , Middle Aged , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Leptospirosis/blood , Leptospirosis/microbiology , Fever/microbiology , Fever/diagnosis , Fever/epidemiology , Animals , Young Adult , Leptospira/genetics , Leptospira/isolation & purification , Leptospira/immunology , Bacterial Zoonoses/diagnosis , Bacterial Zoonoses/epidemiology , Bacterial Zoonoses/microbiology , Brucellosis/diagnosis , Brucellosis/epidemiology , Brucellosis/blood , Brucellosis/microbiology , Brucella/isolation & purification , Brucella/immunology , Brucella/genetics , Outpatients , Q Fever/diagnosis , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/blood , Aged , Serologic Tests , Zoonoses/microbiology , Zoonoses/diagnosis , Zoonoses/epidemiology
3.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Article in English | MEDLINE | ID: mdl-38801569

ABSTRACT

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


Subject(s)
One Health , Poxviridae Infections , Poxviridae , Humans , Animals , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae Infections/epidemiology , Poxviridae/physiology , Poxviridae/pathogenicity , Poxviridae/genetics , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Pandemics , Viral Zoonoses/transmission , Viral Zoonoses/virology , Viral Zoonoses/epidemiology
4.
Adv Exp Med Biol ; 1451: 1-20, 2024.
Article in English | MEDLINE | ID: mdl-38801568

ABSTRACT

Monkeypox (Mpox) is a zoonotic disease caused by a virus (monkeypox virus-MPV) belonging to the Poxviridae family. In humans, the disease has an incubation period of 5-21 days and then progresses in two phases, the prodromal phase and the rash phase. The prodromal phase is characterized by non-specific symptoms such as fever, muscle pain, malaise, lymphadenopathy, headache, and chills. Skin lesions appear in the rash phase of the disease. These lesions progress through different stages (macules, papules, vesicles, and pustules). In May 2022, WHO reported an outbreak of human Mpox in several countries which were previously Mpox-free. As per the CDC report of March 01, 2023, a total of 86,231 confirmed cases of Mpox and 105 deaths have been reported from 110 countries and territories across the globe. Notably, more than 90% of these countries were reporting Mpox for the first time. The phylogenetic analysis revealed that this outbreak was associated with the virus from the West African clade. However, most of the cases in this outbreak had no evidence of travel histories to MPV-endemic countries in Central or West Africa. This outbreak was primarily driven by the transmission of the virus via intimate contact in men who have sex with men (MSM). The changing epidemiology of Mpox raised concerns about the increasing spread of the disease in non-endemic countries and the urgent need to control and prevent it. In this chapter, we present all the documented cases of Mpox from 1970 to 2023 and discuss the past, present, and future of MPV.


Subject(s)
Disease Outbreaks , Monkeypox virus , Mpox (monkeypox) , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/virology , Humans , Monkeypox virus/genetics , Monkeypox virus/pathogenicity , Animals , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Male
5.
Adv Exp Med Biol ; 1451: 75-90, 2024.
Article in English | MEDLINE | ID: mdl-38801572

ABSTRACT

The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Zoonoses , Animals , Mpox (monkeypox)/transmission , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Humans , Monkeypox virus/pathogenicity , Monkeypox virus/genetics , Zoonoses/transmission , Zoonoses/virology , Zoonoses/epidemiology , Disease Reservoirs/virology , Disease Outbreaks , Animals, Wild/virology
6.
Adv Exp Med Biol ; 1451: 355-368, 2024.
Article in English | MEDLINE | ID: mdl-38801590

ABSTRACT

Monkeypox (mpox), a zoonotic disease caused by the monkeypox virus (MPXV), poses a significant public health threat with the potential for global dissemination beyond its endemic regions in Central and West Africa. This study explores the multifaceted aspects of monkeypox, covering its epidemiology, genomics, travel-related spread, mass gathering implications, and economic consequences. Epidemiologically, mpox exhibits distinct patterns, with variations in age and gender susceptibility. Severe cases can arise in immunocompromised individuals, underscoring the importance of understanding the factors contributing to its transmission. Genomic analysis of MPXV highlights its evolutionary relationship with the variola virus and vaccinia virus. Different MPXV clades exhibit varying levels of virulence and transmission potential, with Clade I associated with higher mortality rates. Moreover, the role of recombination in MPXV evolution remains a subject of interest, with implications for understanding its genetic diversity. Travel and mass gatherings play a pivotal role in the spread of monkeypox. The ease of international travel and increasing globalization have led to outbreaks beyond African borders. The economic ramifications of mpox outbreaks extend beyond public health. Direct treatment costs, productivity losses, and resource-intensive control efforts can strain healthcare systems and economies. While vaccination and mitigation strategies have proven effective, the cost-effectiveness of routine vaccination in non-endemic countries remains a subject of debate. This study emphasizes the role of travel, mass gatherings, and genomics in its spread and underscores the economic impacts on affected regions. Enhancing surveillance, vaccination strategies, and public health measures are essential in controlling this emerging infectious disease.


Subject(s)
Disease Outbreaks , Global Health , Monkeypox virus , Mpox (monkeypox) , Travel , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Mpox (monkeypox)/transmission , Humans , Disease Outbreaks/prevention & control , Monkeypox virus/genetics , Monkeypox virus/pathogenicity , Animals , Rare Diseases/epidemiology , Rare Diseases/genetics , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/prevention & control , Public Health , Female , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology , Male
7.
Infect Dis Poverty ; 13(1): 37, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783378

ABSTRACT

Natural, geographical barriers have historically limited the spread of communicable diseases. This is no longer the case in today's interconnected world, paired with its unprecedented environmental and climate change, emphasising the intersection of evolutionary biology, epidemiology and geography (i.e. biogeography). A total of 14 articles of the special issue entitled "Geography and health: role of human translocation and access to care" document enhanced disease transmission of diseases, such as malaria, leishmaniasis, schistosomiasis, COVID-19 (Severe acute respiratory syndrome corona 2) and Oropouche fever in spite of spatiotemporal surveillance. High-resolution satellite images can be used to understand spatial distributions of transmission risks and disease spread and to highlight the major avenue increasing the incidence and geographic range of zoonoses represented by spill-over transmission of coronaviruses from bats to pigs or civets. Climate change and globalization have increased the spread and establishment of invasive mosquitoes in non-tropical areas leading to emerging outbreaks of infections warranting improved physical, chemical and biological vector control strategies. The translocation of pathogens and their vectors is closely connected with human mobility, migration and the global transport of goods. Other contributing factors are deforestation with urbanization encroaching into wildlife zones. The destruction of natural ecosystems, coupled with low income and socioeconomic status, increase transmission probability of neglected tropical and zoonotic diseases. The articles in this special issue document emerging or re-emerging diseases and surveillance of fever symptoms. Health equity is intricately connected to accessibility to health care and the targeting of healthcare resources, necessitating a spatial approach. Public health comprises successful disease management integrating spatial surveillance systems, including access to sanitation facilities. Antimicrobial resistance caused, e.g. by increased use of antibiotics in health, agriculture and aquaculture, or acquisition of resistance genes, can be spread by horizontal gene transfer. This editorial reviews the key findings of this 14-article special issue, identifies important gaps relevant to our interconnected world and makes a number of specific recommendations to mitigate the transmission risks of infectious diseases in the post-COVID-19 pandemic era.


Subject(s)
Health Services Accessibility , Zoonoses , Humans , Animals , Zoonoses/epidemiology , COVID-19/transmission , COVID-19/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases/transmission , SARS-CoV-2 , Geography
9.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755147

ABSTRACT

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Subject(s)
Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
10.
BMC Public Health ; 24(1): 1272, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724984

ABSTRACT

BACKGROUND: Zoonotic infections are a recognised risk for the veterinary community. Veterinary students are at risk, due to the range of activities they participate with on training coupled with their inexperience; yet the prevalence and severity of infections in veterinary students has been little studied. In this study, a survey explored zoonotic infections in UK and Irish veterinary students. METHODS: A survey containing both open and closed questions, was distributed to undergraduate veterinary students at all veterinary schools in the UK and Republic of Ireland. Descriptive statistics, and univariable logistic regression were used to explore quantitative data; thematic analysis was used to explore qualitative data. RESULTS: There were 467 responses, 31.5% (95% CI 27.3-35.9, n = 147) of those students reported having contracted at least one zoonotic infection during their studies. The most prevalent self-reported infections were cryptosporidiosis (15.2% of all respondents), dermatophytosis (5.6%), and other gastrointestinal infections assumed to be of zoonotic origin (4.5%). 7% of respondents reported having acquired a zoonosis within the last 12 months, 91% of these infections were acquired during farm placements. Thematic analysis (n = 34) showed that infection was an accepted risk, particularly on farm, and students were often reluctant to take time off their studies or placements as a result of infection. Reporting was very low, meaning universities would not have accurate figures on infection risk or particularly risky placement providers. CONCLUSIONS: Based on these survey results, veterinary students appear to be at increased risk of contracting zoonotic diseases, particularly on farm placements. Attitude and behaviour change at multiple levels is required to reduce the risk of infection to students and normalise reporting of illness.


Subject(s)
Zoonoses , Humans , Ireland/epidemiology , Cross-Sectional Studies , United Kingdom/epidemiology , Male , Female , Animals , Zoonoses/epidemiology , Adult , Young Adult , Students/statistics & numerical data , Students/psychology , Surveys and Questionnaires , Prevalence , Adolescent
11.
Elife ; 122024 May 16.
Article in English | MEDLINE | ID: mdl-38753426

ABSTRACT

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Subject(s)
Malaria , Plasmodium knowlesi , Primates , Zoonoses , Animals , Humans , Asia, Southeastern/epidemiology , Ecosystem , Malaria/epidemiology , Malaria/transmission , Malaria/parasitology , Prevalence , Primate Diseases/epidemiology , Primate Diseases/parasitology , Primate Diseases/transmission , Primates/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission
12.
Sci Rep ; 14(1): 12027, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797747

ABSTRACT

Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.


Subject(s)
Ursidae , Zoonoses , Ursidae/microbiology , Ursidae/parasitology , Animals , Arctic Regions , Zoonoses/parasitology , Zoonoses/microbiology , Zoonoses/epidemiology , Canada/epidemiology , Toxoplasma/genetics , Toxoplasma/isolation & purification , Trichinella/isolation & purification , Trichinella/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Francisella tularensis/isolation & purification , Francisella tularensis/genetics , Female , Male
13.
Acta Trop ; 255: 107240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705342

ABSTRACT

Cystic echinococcosis (CE), caused by the tapeworm Echinococcus granulosus, is a zoonotic parasitic disease that still represents a serious threat to human and animal health worldwide. The Mediterranean basin is recognized as one of the major hotspots of CE due to several factors, including the presence of diverse intermediate host species as well as socio-economic and cultural conditions of local communities. This study aims to take a closer look at epidemiological data on CE in the Mediterranean area and assess the knowledge attitudes and practices of shepherds towards this disease in four countries (Algeria, Greece, Italy and Tunisia), highly endemic for CE, with the final goal of identifying highly endemic risk areas and practices in use which might potentially allow the persistence of E. granulosus infection in these areas. To update the epidemiological scenario of CE in Mediterranean areas, a comprehensive review of peer-reviewed literature on CE prevalence data published during the 2017-2023 period was carried out and, through a geographical information system (GIS), a map displaying the current CE distribution in the Mediterranean area was generated. In addition, a questionnaire survey was conducted through in-depth interviews of the farmers to collect information on their management system as well as knowledge attitudes and practices towards CE. From the farmer-participatory survey some risky practices emerged including the non-regular deworming of dogs or the use of ineffective drugs or dosing, as well as the provision of uncooked animal viscera to dogs. Finally, lower levels of knowledge and awareness of the disease was observed among farmers from North Africa compared with those of European countries. In conclusion, the results obtained highlight that CE is still a very serious problem in Mediterranean areas and increased efforts are needed to promote awareness among farmers and to turn research results into policy in order to reduce the spread of this disease, according to the One Health perspective.


Subject(s)
Echinococcosis , Echinococcus granulosus , Health Knowledge, Attitudes, Practice , Livestock , Animals , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/prevention & control , Livestock/parasitology , Dogs , Mediterranean Region/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Greece/epidemiology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/prevention & control , Humans , Italy/epidemiology , Prevalence , Cattle , Tunisia/epidemiology , Algeria/epidemiology , Surveys and Questionnaires , Sheep , Farmers/statistics & numerical data
14.
Rev Med Virol ; 34(3): e2541, 2024 May.
Article in English | MEDLINE | ID: mdl-38743385

ABSTRACT

As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.


Subject(s)
Bibliometrics , Humans , Disease Outbreaks/prevention & control , Animals , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/virology , COVID-19/transmission , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/prevention & control , Pandemics/prevention & control
15.
J Med Virol ; 96(5): e29621, 2024 May.
Article in English | MEDLINE | ID: mdl-38654686

ABSTRACT

Mpox is a zoonotic disease historically reported in Africa. Since 2003, limited outbreaks have occurred outside Africa. In 2022, the global spread of cases with sustained interhuman transmission and unusual disease features raised public health concerns. We explore the mpox outbreak in Rio de Janeiro (RJ) state, Brazil, in an observational study of mpox-suspected cases from June to December 2022. Data collection relied on a public healthcare notification form. Diagnosis was determined by MPXV-PCR. In 46 confirmed cases, anti-OPXV IgG was determined by ELISA, and seven MPXV genomes were sequenced. A total of 3095 cases were included, 816 (26.3%) with positive MPXV-PCR results. Most positive cases were men in their 30 s and MSM. A total of 285 (34.9%) MPXV-PCR+ patients live with HIV. Eight were coinfected with varicella-zoster virus. Anogenital lesions and adenomegaly were associated with the diagnosis of mpox. Females and individuals under 18 represented 9.4% and 5.4% of all confirmed cases, respectively, showing higher PCR cycle threshold (Ct) values and fewer anogenital lesions compared to adult men. Anti-OPXV IgG was detected in 29/46 (63.0%) patients. All analyzed sequences belonged to clade IIb. In RJ state, mpox presented a diverse clinical picture, represented mainly by mild cases with low complication rates and prominent genital involvement. The incidence in females and children was higher than usually reported. The observation of a bimodal distribution of Ct values, with few positive results, may suggest the need to review the diagnostic criteria in these groups.


Subject(s)
Disease Outbreaks , Humans , Brazil/epidemiology , Male , Female , Adult , Young Adult , Adolescent , Middle Aged , Animals , Zoonoses/epidemiology , Zoonoses/virology , Herpesvirus 3, Human/genetics , Herpesvirus 3, Human/isolation & purification , Child , HIV Infections/epidemiology , HIV Infections/virology , Antibodies, Viral/blood , Aged , Immunoglobulin G/blood
17.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
18.
Sci Rep ; 14(1): 9823, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684927

ABSTRACT

The emergence of infectious diseases with pandemic potential is a major public health threat worldwide. The World Health Organization reports that about 60% of emerging infectious diseases are zoonoses, originating from spillover events. Although the mechanisms behind spillover events remain unclear, mathematical modeling offers a way to understand the intricate interactions among pathogens, wildlife, humans, and their shared environment. Aiming at gaining insights into the dynamics of spillover events and the outcome of an eventual disease outbreak in a population, we propose a continuous time stochastic modeling framework. This framework links the dynamics of animal reservoirs and human hosts to simulate cross-species disease transmission. We conduct a thorough analysis of the model followed by numerical experiments that explore various spillover scenarios. The results suggest that although most epidemic outbreaks caused by novel zoonotic pathogens do not persist in the human population, the rising number of spillover events can avoid long-lasting extinction and lead to unexpected large outbreaks. Hence, global efforts to reduce the impacts of emerging diseases should not only address post-emergence outbreak control but also need to prevent pandemics before they are established.


Subject(s)
Communicable Diseases, Emerging , Public Health , Zoonoses , Humans , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Animals , Zoonoses/epidemiology , Zoonoses/transmission , Disease Outbreaks , Models, Theoretical , Disease Reservoirs , Pandemics
19.
PLoS One ; 19(4): e0299527, 2024.
Article in English | MEDLINE | ID: mdl-38687751

ABSTRACT

The aim of this study is to develop a scoring platform to be used as a reference for both medical preparedness and research resource allocation in the prioritization of zoonoses. Using a case-control design, a comprehensive analysis of 46 zoonoses was conducted to identify factors influencing disease prioritization. This analysis provides a basis for constructing models and calculating prioritization scores for different diseases. The case group (n = 23) includes diseases that require immediate notification to health authorities within 24 hours of diagnosis. The control group (n = 23) includes diseases that do not require such immediate notification. Two different models were developed for primary disease prioritization: one model incorporated the four most commonly used prioritization criteria identified through an extensive literature review. The second model used the results of multiple logistic regression analysis to identify significant factors (with p-value less than 0.1) associated with 24-hour reporting, allowing for objective determination of disease prioritization criteria. These different modeling approaches may result in different weights and positive or negative effects of relevant factors within each model. Our study results highlight the variability of zoonotic disease information across time and geographic regions. It provides an objective platform to rank zoonoses and highlights the critical need for regular updates in the prioritization process to ensure timely preparedness. This study successfully established an objective framework for assessing the importance of zoonotic diseases. From a government perspective, it advocates applying principles that consider disease characteristics and medical resource preparedness in prioritization. The results of this study also emphasize the need for dynamic prioritization to effectively improve preparedness to prevent and control disease.


Subject(s)
Resource Allocation , Zoonoses , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/transmission , Animals , Humans , Health Priorities , Case-Control Studies , Logistic Models
20.
Vet Med Sci ; 10(3): e1441, 2024 05.
Article in English | MEDLINE | ID: mdl-38613179

ABSTRACT

BACKGROUND: Coxiellosis is a neglected zoonosis for occupationally exposed people in many parts of the world. Sheep and goats are two important small ruminants that act as reservoirs for human contamination; however, there is a lack of comprehensive data on the epidemiological aspects of coxiellosis in sheep and goats at regional and global levels. The aim of this study was to systematically review the available articles on seroprevalence of coxiellosis in sheep and goats and estimate the overall seroprevalence in different regions. METHODS: A systematic search strategy was performed in five electronic repositories for articles published until December 2021. Relevant data were extracted from the selected articles based on the inclusion criteria. A random effect meta-analysis model was used to analyse the data. Results are presented as the prevalence of seropositivity as a percentage and 95% confidence intervals. RESULTS: The global pooled seroprevalence of coxiellosis in sheep was 17.38% (95% confidence interval [CI]: 15.59%-19.17%). Overall, the regional level pooled prevalence estimates in sheep ranged from 15.04% (95% CI: 7.68%-22.40%) to 19.14% (95% CI: 15.51%-22.77%), depending on region. The global pooled seroprevalence of coxiellosis in goats was 22.60% (95% CI: 19.54%-25.66%). Overall, the regional level pooled prevalence estimates in goats ranged from 6.33% (95% CI: 2.96%-9.71%) to 55.13% (95% CI: 49.61%-60.65%), depending on the region. The prevalence estimates also varied significantly in both sheep and goats depending on age, sex, and rearing systems of the animals (p < 0.001). CONCLUSION: Seroprevalence of coxiellosis in both sheep and goats is considerable. Routine monitoring of the sheep and goat populations is needed to prevent spillover infection in other livestock and humans.


Subject(s)
Goat Diseases , Sheep Diseases , Sheep , Humans , Animals , Seroepidemiologic Studies , Ruminants , Goats , Zoonoses/epidemiology , Livestock , Goat Diseases/epidemiology , Sheep Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...