Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.595
Filter
1.
Parasitol Res ; 123(6): 233, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850488

ABSTRACT

Enterocytozoon bieneusi is a common cause of human microsporidiosis and can infect a variety of animal hosts worldwide. In Thailand, previous studies have shown that this parasite is common in domestic animals. However, information on the prevalence and genotypes of this parasite in other synanthropic wildlife, including bats, remains limited. Several pathogens have been previously detected in bats, suggesting that bats may serve as a reservoir for this parasite. In this study, a total of 105 bat guano samples were collected from six different sites throughout Thailand. Of these, 16 from Chonburi (eastern), Ratchaburi (western), and Chiang Rai (northern) provinces tested positive for E. bieneusi, representing an overall prevalence of 15.2%. Based on ITS1 sequence analysis, 12 genotypes were identified, including two known genotypes (D and type IV) frequently detected in humans and ten novel potentially zoonotic genotypes (TBAT01-TBAT10), all belonging to zoonotic group 1. Lyle's flying fox (Pteropus lylei), commonly found in Southeast Asia, was identified as the host in one sample that was also positive for E. bieneusi. Network analysis of E. bieneusi sequences detected in this study and those previously reported in Thailand also revealed intraspecific divergence and recent population expansion, possibly due to adaptive evolution associated with host range expansion. Our data revealed, for the first time, multiple E. bieneusi genotypes of zoonotic significance circulating in Thai bats and demonstrated that bat guano fertilizer may be a vehicle for disease transmission.


Subject(s)
Chiroptera , Enterocytozoon , Genotype , Microsporidiosis , Phylogeny , Chiroptera/parasitology , Chiroptera/microbiology , Animals , Thailand/epidemiology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Prevalence , Humans , Sequence Analysis, DNA , Zoonoses/parasitology , DNA, Ribosomal Spacer/genetics , DNA, Fungal/genetics
2.
Parasites Hosts Dis ; 62(2): 163-168, 2024 May.
Article in English | MEDLINE | ID: mdl-38835257

ABSTRACT

Dipylidium caninum is a cosmopolitan parasite of companion animals such as dogs and cats. Accidental infection in humans occur mostly in children. Although considerable number of cases were reported from Europe and the Americas, case reports of this zoonotic disease are rather scarce from Asian countries. The aim of this study is to report the results of literature survey on dipylidiasis cases in humans in Japan. Conclusively, we have found a total of 17 cases since the first case report in from Aichi Prefecture in 1925.


Subject(s)
Cat Diseases , Japan/epidemiology , Animals , Humans , Cats , Male , Dogs , Female , Child , Adult , Middle Aged , Cat Diseases/parasitology , Cat Diseases/epidemiology , Cat Diseases/transmission , Zoonoses/parasitology , Zoonoses/transmission , Zoonoses/epidemiology , Adolescent , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/transmission , Child, Preschool , Aged , Cestoda/isolation & purification
3.
Infect Dis Poverty ; 13(1): 46, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877531

ABSTRACT

BACKGROUND: Digenetic trematodes, including blood flukes, intestinal flukes, liver flukes, lung flukes, and pancreatic flukes, are highly diverse and distributed widely. They affect at least 200 million people worldwide, so better understanding of their global distribution and prevalence are crucial for controlling and preventing human trematodiosis. Hence, this scoping review aims to conduct a comprehensive investigation on the spatio-temporal distribution and epidemiology of some important zoonotic digenetic trematodes. METHODS: We conducted a scoping review by searching PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure, and Wanfang databases for articles, reviews, and case reports of zoonotic digenetic trematodes, without any restrictions on the year of publication. We followed the inclusion and exclusion criteria to identify relevant studies. And relevant information of the identified studies were collected and summarized. RESULTS: We identified a total of 470 articles that met the inclusion criteria and were included in the review finally. Our analysis revealed the prevalence and global distribution of species in Schistosoma, Echinostoma, Isthmiophora, Echinochasmus, Paragonimus, Opisthorchiidae, Fasciolidae, Heterophyidae, and Eurytrema. Although some flukes are distributed worldwide, developing countries in Asia and Africa are still the most prevalent areas. Furthermore, there were some overlaps between the distribution of zoonotic digenetic trematodes from the same genus, and the prevalence of some zoonotic digenetic trematodes was not entirely consistent with their global distribution. The temporal disparities in zoonotic digenetic trematodes may attribute to the environmental changes. The gaps in our knowledge of the epidemiology and control of zoonotic digenetic trematodes indicate the need for large cohort studies in most countries. CONCLUSIONS: This review provides important insights into the prevalence and global distribution of some zoonotic digenetic trematodes, firstly reveals spatio-temporal disparities in these digenetic trematodes. Countries with higher prevalence rate could be potential sources of transmitting diseases to other areas and are threat for possible outbreaks in the future. Therefore, continued global efforts to control and prevent human trematodiosis, and more international collaborations are necessary in the future.


Subject(s)
Trematoda , Trematode Infections , Zoonoses , Animals , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission , Trematode Infections/epidemiology , Trematode Infections/parasitology , Humans , Prevalence , Global Health
4.
Infect Dis Poverty ; 13(1): 40, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822386

ABSTRACT

BACKGROUND: Opisthorchiid flukes, particularly Opisthorchis viverrini, Opisthorchis felineus, Clonorchis sinensis, and Metorchis spp. are the most common fish-borne zoonotic human liver flukes (hLFs). Liver fluke infections are more prevalent in resource-deprived and underprivileged areas. We herein estimated the prevalence of the metacercariae (MC) of major hLFs in common large freshwater fishes (lFWF) marketed for human consumption from some selected areas of Bangladesh along with detection of their molluscan vectors and reservoirs. METHODS: The current status of fish-borne zoonotic hLF infections in lFWF was investigated along with their molluscan vectors and mammalian reservoir hosts in Mymensingh and Kishoreganj in Bangladesh from July 2018-June 2022 using conventional and multiple molecular techniques, such as PCR, PCR-restriction fragment length polymorphism (RFLP), sequencing, and bioinformatic analyses. The infection rate of fishes was analyzed using the Z-test and the loads of MC were compared using the chi-squared (χ2) test. RESULTS: The MC of C. sinensis, Opisthorchis spp., and Metorchis spp. were detected in 11 species of common and popular lFWF. In lFWF, the estimated prevalence was 18.7% and the mean load was 137.4 ± 149.8 MC per 100 g of fish. The prevalence was the highest (P < 0.05) in spotted snakehead fishes (Channa punctata, 63.6%). The highest rate of infection (P < 0.05) was observed with the MC of C. sinensis (11.8%). Metacercariae were almost equally (P > 0.05) distributed between the head and body of fishes. The infection rate was slightly higher in cultured (19.6%) fishes. The MC of C. sinensis, O. felineus, O. viverrini, and Metorchis orientalis in fishes were confirmed using PCR, PCR-RFLP and bioinformatics. The cercariae of opisthorchiid (Pleurolophocercus cercariae) flukes were only recovered from Bithynia spp. (3.9%, 42 out of 1089). The ova of hLFs from dogs (4.3%, 5 out of 116) and cats (6.0%, 6 out of 100), and adult flukes (M. orientalis) from ducks (41.1% 113 out of 275) were detected. CONCLUSIONS: The MC of hLFs are highly prevalent in fresh water fishes in Bangladesh. Reservoir hosts, such as street dogs, cats, and ducks carried the patent infection, and residents of Bangladesh are at risk.


Subject(s)
Disease Reservoirs , Fish Diseases , Fishes , Fresh Water , Zoonoses , Animals , Bangladesh/epidemiology , Fishes/parasitology , Fresh Water/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Humans , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission , Disease Vectors , Prevalence , Opisthorchis/genetics , Opisthorchis/isolation & purification , Metacercariae/genetics , Metacercariae/isolation & purification , Clonorchis sinensis/genetics , Clonorchis sinensis/isolation & purification , Mollusca/parasitology
5.
Parasitol Res ; 123(6): 238, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856772

ABSTRACT

Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease caused by Leishmania (L.) major. This zoonosis is characterized by a broad-spectrum clinical polymorphism and may be underestimated and poorly treated since it is a simulator of various dermatoses. The aim of our study was to analyze the clinical polymorphism of patients with ZCL. A total of 142 patients with confirmed CL based on the microscopic examination of skin lesion biopsies were included in this study. Molecular typing of Leishmania species revealed that all patients were infected with L. major. In total, 14 clinical forms were observed. Six were typical and eight were atypical. The typical ZCL forms are grouped as follows: papular (26.76%), ulcero-crusted (26.05%), ulcerated (13.38%), impetiginous (9.86%), nodular (9.15%), and papulo-nodular (5.63%) lesions. In atypical ZCL forms, we described erythematous (2.81%), erysipeloid (1.4%), sporotrichoid, (1.4%), keratotic (0.7%) lupoid (0.7%), lichenoid (0.7%), psoriasiform (0.7%), and zosteriform (0.7%) lesions. Here, the lichenoid and the keratotic forms caused by L. major were reported for the first time in Tunisia. These findings will help physicians to be aware of the unusual lesions of ZCL that could be confused with other dermatological diseases. For this reason, it will be necessary to improve the diagnosis of CL especially in endemic areas. Such large clinical polymorphism caused by L. major may be the result of a complex association between the vector microbiota, the parasite, and the host immune state, and further studies should be carried out in order to reveal the mechanisms involved in clinical polymorphism of ZCL.


Subject(s)
Leishmaniasis, Cutaneous , Zoonoses , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Humans , Male , Female , Adult , Zoonoses/parasitology , Zoonoses/diagnosis , Middle Aged , Animals , Adolescent , Young Adult , Child , Leishmania major/genetics , Leishmania major/isolation & purification , Aged , Skin/parasitology , Skin/pathology , Child, Preschool
6.
Emerg Infect Dis ; 30(6): 1258-1262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782140

ABSTRACT

Ancylostoma ceylanicum is the second most common hookworm infecting humans in the Asia-Pacific region. Recent reports suggest presence of the parasite in the Americas. We report A. ceylanicum infections in coyotes from the Guanacaste Conservation Area, Costa Rica. Our findings call for active surveillance in humans and animals.


Subject(s)
Ancylostoma , Ancylostomiasis , Coyotes , Zoonoses , Costa Rica/epidemiology , Animals , Ancylostomiasis/epidemiology , Ancylostomiasis/veterinary , Ancylostomiasis/parasitology , Ancylostomiasis/diagnosis , Ancylostoma/isolation & purification , Zoonoses/parasitology , Coyotes/parasitology , Humans
7.
Front Immunol ; 15: 1388366, 2024.
Article in English | MEDLINE | ID: mdl-38799470

ABSTRACT

Cryptosporidiosis in humans is caused by infection of the zoonotic apicomplexan parasite Cryptosporidium parvum. In 2006, it was included by the World Health Organization (WHO) in the group of the most neglected poverty-related diseases. It is characterized by enteritis accompanied by profuse catarrhalic diarrhea with high morbidity and mortality, especially in children of developing countries under the age of 5 years and in HIV patients. The vulnerability of HIV patients indicates that a robust adaptive immune response is required to successfully fight this parasite. Little is known, however, about the adaptive immune response against C. parvum. To have an insight into the early events of the adaptive immune response, we generated primary human dendritic cells (DCs) from monocytes of healthy blood donors and exposed them to C. parvum oocysts and sporozoites in vitro. DCs are equipped with numerous receptors that detect microbial molecules and alarm signals. If stimulation is strong enough, an essential maturation process turns DCs into unique activators of naïve T cells, a prerequisite of any adaptive immune response. Parasite exposure highly induced the production of the pro-inflammatory cytokines/chemokines interleukin (IL)-6 and IL-8 in DCs. Moreover, antigen-presenting molecules (HLA-DR and CD1a), maturation markers, and costimulatory molecules required for T-cell stimulation (CD83, CD40, and CD86) and adhesion molecules (CD11b and CD58) were all upregulated. In addition, parasite-exposed human DCs showed enhanced cell adherence, increased mobility, and a boosted but time-limited phagocytosis of C. parvum oocysts and sporozoites, representing other prerequisites for antigen presentation. Unlike several other microbial stimuli, C. parvum exposure rather led to increased oxidative consumption rates (OCRs) than extracellular acidification rates (ECARs) in DCs, indicating that different metabolic pathways were used to provide energy for DC activation. Taken together, C. parvum-exposed human DCs showed all hallmarks of successful maturation, enabling them to mount an effective adaptive immune response.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Dendritic Cells , Humans , Dendritic Cells/immunology , Cryptosporidium parvum/immunology , Cryptosporidiosis/immunology , Animals , Cytokines/metabolism , Cytokines/immunology , Cells, Cultured , Cell Differentiation/immunology , Lymphocyte Activation/immunology , Adaptive Immunity , Zoonoses/immunology , Zoonoses/parasitology
8.
Vet Parasitol Reg Stud Reports ; 51: 101024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772639

ABSTRACT

Dogs play an important role as hosts and reservoirs for many zoonotic diseases. Ehrlichiosis, babesiosis and hepatozoonosis are a group of canine vector-borne diseases that can be transmitted via ectoparasites from dog to dog and also from dog to humans. This study focused on three main blood parasites of dog (i.e., Babesia spp., Ehrlichia spp. and Hepatozoon spp.) among two different landscape types of eight villages of Santhong Sub-district, Nan Province, Thailand. In this study, 149 dogs were surveyed and blood samples were collected. Blood parasite infections in dogs were assessed using molecular detection approach. Babesia canis vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis were detected with prevalence of infection at 10.7%, 8.1%, 3.4% and 0.7%, respectively. In terms of landscape type, prevalence of overall blood parasites, particularly Babesia spp. infections were higher in dogs living in upland forested areas (28.3%) compared to dogs from lowland agricultural areas (12.3%). Data obtained from the questionnaires on perceptions of dog owners showed that dogs raised all the time outside owner's house, and those dogs whose owners have never bathed and cleaned were more likely to be exposed to blood parasites. As infected dogs could play an important role as reservoirs of the blood parasites, attitude of dog owners may affect public health in terms of zoonotic disease transmission. Effective control measures and surveillance program of arthropod vectors and blood parasite infection in dogs still need to be advocated to minimize zoonotic disease transmission.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Animals , Dogs , Thailand/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Babesiosis/epidemiology , Babesiosis/parasitology , Female , Male , Prevalence , Babesia/isolation & purification , Humans , Ehrlichiosis/veterinary , Ehrlichiosis/epidemiology , Zoonoses/parasitology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eucoccidiida/isolation & purification , Ehrlichia canis/isolation & purification
9.
Vet Parasitol Reg Stud Reports ; 51: 101025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772640

ABSTRACT

Egyptians are becoming more interested in owning and raising pets; however, most of them lack essential awareness about the risk of zoonotic parasites that could be transmitted. The objective of the present investigation was to evaluate the degree of awareness Egyptian pet owners possess concerning zoonotic parasitic diseases, the risk of transmission, and preventative measures. A cross-sectional study was conducted using an e-survey. Among 246 pet owners, 64.2% (158) were females, and 67.9% (167) belonged to the 20-30 age group. The majority, 78.9% (194), were raising cats. Only 13.8% (34) visited the veterinarian regularly, with significantly higher results among dog owners (p < 0.05). Only 31.3% (77) participants were regularly deworming their pets, and 19.9% (49) were giving their pets prophylaxis against ectoparasites, with significantly higher results among those who visited the veterinarian regularly (p < 0.0001) and among dog owners (p < 0.05). Only 54.1% (133) had heard about the term "zoonoses" before, and about 8.9% (22) of participants showed a history of zoonotic parasitic diseases, with significantly higher results among those who allowed their animals to play with other animals of neighbors and friends (p < 0.05). The obtained results concluded that the surveyed group had a relatively good degree of knowledge regarding pets as a source of zoonotic illness; raising pet owners' awareness regarding the importance of routine medical examinations and minimizing the contact of pets with other stray animals is essential.


Subject(s)
Health Knowledge, Attitudes, Practice , Pets , Zoonoses , Animals , Egypt/epidemiology , Zoonoses/prevention & control , Zoonoses/parasitology , Humans , Female , Male , Adult , Cross-Sectional Studies , Cats , Dogs , Young Adult , Pets/parasitology , Middle Aged , Cat Diseases/parasitology , Cat Diseases/prevention & control , Cat Diseases/epidemiology , Surveys and Questionnaires , Parasitic Diseases, Animal/prevention & control , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology , Dog Diseases/prevention & control , Dog Diseases/parasitology , Dog Diseases/transmission , Dog Diseases/epidemiology , Adolescent
10.
Math Biosci ; 373: 109209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754625

ABSTRACT

Clonorchiasis is a zoonotic disease mainly caused by eating raw fish and shrimp, and there is no vaccine to prevent it. More than 30 million people are infected worldwide, of which China alone accounts for about half, and is one of the countries most seriously affected by Clonorchiasis. In this work, we formulate a novel Ordinary Differential Equation (ODE) model to discuss the biological attributes of fish within authentic ecosystems and the complex lifecycle of Clonorchis sinensis. This model includes larval fish, adult fish, infected fish, humans, and cercariae. We derive the basic reproduction number and perform a rigorous stability analysis of the proposed model. Numerically, we use data from 2016 to 2021 in Guangxi, China, to discuss outbreaks of Clonorchiasis and obtain the basic reproduction number R0=1.4764. The fitted curve appropriately reflects the overall trend and replicates a low peak in the case number of Clonorchiasis. By reducing the release rate of cercariae in 2018, the fitted values of Clonorchiasis cases dropped rapidly and almost disappeared. If we decrease the transmission rate from infected fish to humans, Clonorchiasis can be controlled. Our studies also suggest that strengthening publicity education and cleaning water quality can effectively control the transmission of Clonorchiasis in Guangxi, China.


Subject(s)
Clonorchiasis , Fishes , Animals , Humans , Clonorchiasis/transmission , Clonorchiasis/prevention & control , Clonorchiasis/epidemiology , Fishes/parasitology , China/epidemiology , Life Cycle Stages , Basic Reproduction Number/statistics & numerical data , Models, Theoretical , Models, Biological , Fish Diseases/parasitology , Fish Diseases/transmission , Fish Diseases/prevention & control , Fish Diseases/epidemiology , Zoonoses/transmission , Zoonoses/parasitology , Zoonoses/prevention & control , Zoonoses/epidemiology , Clonorchis sinensis , Mathematical Concepts
11.
Sci Rep ; 14(1): 12027, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797747

ABSTRACT

Increasing Arctic temperatures are facilitating the northward expansion of more southerly hosts, vectors, and pathogens, exposing naïve populations to pathogens not typical at northern latitudes. To understand such rapidly changing host-pathogen dynamics, we need sensitive and robust surveillance tools. Here, we use a novel multiplexed magnetic-capture and droplet digital PCR (ddPCR) tool to assess a sentinel Arctic species, the polar bear (Ursus maritimus; n = 68), for the presence of five zoonotic pathogens (Erysipelothrix rhusiopathiae, Francisella tularensis, Mycobacterium tuberculosis complex, Toxoplasma gondii and Trichinella spp.), and observe associations between pathogen presence and biotic and abiotic predictors. We made two novel detections: the first detection of a Mycobacterium tuberculosis complex member in Arctic wildlife and the first of E. rhusiopathiae in a polar bear. We found a prevalence of 37% for E. rhusiopathiae, 16% for F. tularensis, 29% for Mycobacterium tuberculosis complex, 18% for T. gondii, and 75% for Trichinella spp. We also identify associations with bear age (Trichinella spp.), harvest season (F. tularensis and MTBC), and human settlements (E. rhusiopathiae, F. tularensis, MTBC, and Trichinella spp.). We demonstrate that monitoring a sentinel species, the polar bear, could be a powerful tool in disease surveillance and highlight the need to better characterize pathogen distributions and diversity in the Arctic.


Subject(s)
Ursidae , Zoonoses , Ursidae/microbiology , Ursidae/parasitology , Animals , Arctic Regions , Zoonoses/parasitology , Zoonoses/microbiology , Zoonoses/epidemiology , Canada/epidemiology , Toxoplasma/genetics , Toxoplasma/isolation & purification , Trichinella/isolation & purification , Trichinella/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Francisella tularensis/isolation & purification , Francisella tularensis/genetics , Female , Male
12.
Acta Trop ; 255: 107240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705342

ABSTRACT

Cystic echinococcosis (CE), caused by the tapeworm Echinococcus granulosus, is a zoonotic parasitic disease that still represents a serious threat to human and animal health worldwide. The Mediterranean basin is recognized as one of the major hotspots of CE due to several factors, including the presence of diverse intermediate host species as well as socio-economic and cultural conditions of local communities. This study aims to take a closer look at epidemiological data on CE in the Mediterranean area and assess the knowledge attitudes and practices of shepherds towards this disease in four countries (Algeria, Greece, Italy and Tunisia), highly endemic for CE, with the final goal of identifying highly endemic risk areas and practices in use which might potentially allow the persistence of E. granulosus infection in these areas. To update the epidemiological scenario of CE in Mediterranean areas, a comprehensive review of peer-reviewed literature on CE prevalence data published during the 2017-2023 period was carried out and, through a geographical information system (GIS), a map displaying the current CE distribution in the Mediterranean area was generated. In addition, a questionnaire survey was conducted through in-depth interviews of the farmers to collect information on their management system as well as knowledge attitudes and practices towards CE. From the farmer-participatory survey some risky practices emerged including the non-regular deworming of dogs or the use of ineffective drugs or dosing, as well as the provision of uncooked animal viscera to dogs. Finally, lower levels of knowledge and awareness of the disease was observed among farmers from North Africa compared with those of European countries. In conclusion, the results obtained highlight that CE is still a very serious problem in Mediterranean areas and increased efforts are needed to promote awareness among farmers and to turn research results into policy in order to reduce the spread of this disease, according to the One Health perspective.


Subject(s)
Echinococcosis , Echinococcus granulosus , Health Knowledge, Attitudes, Practice , Livestock , Animals , Echinococcosis/epidemiology , Echinococcosis/veterinary , Echinococcosis/prevention & control , Livestock/parasitology , Dogs , Mediterranean Region/epidemiology , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Greece/epidemiology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/prevention & control , Humans , Italy/epidemiology , Prevalence , Cattle , Tunisia/epidemiology , Algeria/epidemiology , Surveys and Questionnaires , Sheep , Farmers/statistics & numerical data
13.
Acta Trop ; 255: 107249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740319

ABSTRACT

BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.


Subject(s)
Malaria , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Plasmodium , RNA, Ribosomal, 18S , Sensitivity and Specificity , Zoonoses , Animals , Nucleic Acid Amplification Techniques/methods , Malaria/diagnosis , Malaria/parasitology , Malaria/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Diagnostic Techniques/methods , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/classification , Zoonoses/parasitology , Zoonoses/diagnosis , Humans , DNA Primers/genetics , Fluorescence , Macaca/parasitology , Monkey Diseases/parasitology , Monkey Diseases/diagnosis
14.
Vet Parasitol ; 329: 110192, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749124

ABSTRACT

Giardia duodenalis (syn. G. intestinalis or G. lamblia) is a parasitic protozoan that infects the upper intestinal tract of a broad range of hosts, including humans and domestic animals. Thus, it has raised concerns about the public health risk due to companion animals. Recently, with the improvement of living standards and increasing contacts between pets and humans, the zoonotic transmission of Giardia has dramatically increased. From a genetic point of view, G. duodenalis should be viewed as a complex species that includes eight different species-specific genetic assemblages. The laboratory diagnosis is mainly based on the finding of microscopic cysts in stool samples by coprological examination. Other methods include the detection of antigens, immunoassays or PCR protocols, which allow the identification of Giardia assemblages. The study aimed to compare the performance of Direct Fluorescence Antibody test (DFA), zinc sulfate flotation technique (ZnSO4), rapid diagnostic test (RDT), end-point PCR amplification (PCR) for the detection of Giardia and to identify the concerning assemblages in a canine population from Central Italy. Direct fluorescence antibody test is the reference standard for laboratory diagnosis of Giardia in fecal samples from dogs, despite the microscopic examination after flotation remains the most useful method in many veterinary diagnostic centers. The present findings demonstrate the high performance of DFA and ZnSO4 in detecting Giardia, while RDT may be useful as alternative or complementary method to the DFA and ZnSO4. PCR performance was low, but it allowed determining Giardia B zoonotic assemblage in 25% of the PCR-positive specimens (15 out of 60), while the remaining PCR-positive isolates belonged to the dog-specific assemblage C. The 26% prevalence of G. duodenalis detected by DFA in owned dogs and the identification of potentially zoonotic assemblages underline the potential risk for public health and indicate frequent cross-species transmission of the parasite between humans and dogs.


Subject(s)
Dog Diseases , Feces , Giardiasis , Zoonoses , Animals , Dogs , Giardiasis/veterinary , Giardiasis/diagnosis , Giardiasis/parasitology , Dog Diseases/diagnosis , Dog Diseases/parasitology , Zoonoses/diagnosis , Zoonoses/parasitology , Feces/parasitology , Humans , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Giardia/isolation & purification , Giardia/genetics , Giardia lamblia/isolation & purification , Giardia lamblia/genetics , Fluorescent Antibody Technique, Direct/veterinary , Italy/epidemiology , Sensitivity and Specificity
15.
Environ Microbiol Rep ; 16(3): e13261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747071

ABSTRACT

In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context.


Subject(s)
Bacteria , Feces , Foxes , Phylogeny , Raccoons , Animals , Germany , Foxes/microbiology , Foxes/parasitology , Raccoons/microbiology , Raccoons/parasitology , Feces/microbiology , Feces/parasitology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Zoonoses/microbiology , Zoonoses/parasitology , Whole Genome Sequencing
16.
Elife ; 122024 May 16.
Article in English | MEDLINE | ID: mdl-38753426

ABSTRACT

Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.


Zoonotic diseases are infectious diseases that are transmitted from animals to humans. For example, the malaria-causing parasite Plasmodium knowlesi can be transmitted from monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, progress towards eliminating malaria is being undermined by the rise of human incidences of 'monkey malaria', which has been declared a public health threat by The World Health Organisation. In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an increase in infection rates. For example, reduced living space increases contact between monkeys, or it may prevent behaviours that help animals to avoid parasites. Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across Southeast Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 monkeys to see how environmental factors like deforestation influenced the amount of disease in different places. Many previous studies have assumed that disease prevalence is high across all macaques, monkey species that are considered pests, and in all places. But Johnson et al. found that disease rates vary widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), but in regions with less forest or more 'fragmented' forest areas, malaria rates are higher. Areas with a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This suggests that deforestation may be driving malaria infection in monkeys, which could be part of the reason for increased human infection rates. Johnsons et al.'s study has provided an important step towards better understanding the link between deforestation and the levels of monkey malaria in humans living nearby. Their study provides important insights into how we might find ways of managing the landscape better to reduce health risks from wildlife infection.


Subject(s)
Malaria , Plasmodium knowlesi , Primates , Zoonoses , Animals , Humans , Asia, Southeastern/epidemiology , Ecosystem , Malaria/epidemiology , Malaria/transmission , Malaria/parasitology , Prevalence , Primate Diseases/epidemiology , Primate Diseases/parasitology , Primate Diseases/transmission , Primates/parasitology , Zoonoses/epidemiology , Zoonoses/parasitology , Zoonoses/transmission
17.
J Infect Dis ; 229(6): 1904-1908, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38669235

ABSTRACT

We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.


Subject(s)
Hybridization, Genetic , Zoonoses , Animals , Humans , Zoonoses/transmission , Zoonoses/parasitology , Schistosomiasis haematobia/transmission , Schistosomiasis haematobia/parasitology , Schistosoma haematobium/genetics , Mice
18.
Res Vet Sci ; 172: 105239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583195

ABSTRACT

Improperly cooked fish, carrying active metacercariae (MCs), can pose a significant risk for transmitting fish-borne zoonotic trematodes (FBZTs) to human consumers. This study aimed to enhance our understanding of FBZTs by conducting a comprehensive cross-sectional analysis involving various fish species, such as Nile tilapia (Oreochromis niloticus), African catfish (Clarias gariepinus), and red-belly tilapia (Tilapia zillii). These fish specimens were collected from distinct Egyptian governorates, specifically Giza, Kafr al-Shaykh, and Fayoum. The recovered flukes from experimentally infected domestic pigeons were identified as Prohemistomum vivax, Haplorchis pumilio, and Pygidiopsis genata based on morphological features. Furthermore, the identity of the retrieved adult flukes was confirmed using three species-specific primers for PCR amplification and sequencing analysis of the ITS rDNA region and have been deposited in GenBank with the following accession numbers: P. vivax (OR291421.1 and OR291422.1), P. genata (OP099561.1), and H. pumilio (OM439581.1-OP090510.1). Quantitative real-time PCR targeting the immunological genes Tumor Necrosis Factor-alpha (TNF-alpha) and Interleukin-1 (IL-1Β) was employed to compare the cellular immune response between infected with EMCs and uninfected O. niloticus. The results indicated a significant increase in TNF- and IL-1Β levels in FBZTs-infected vs un-infected fishes. Importantly, the presence of adult flukes and EMCs led to substantial histological alterations in both experimentally infected pigeons and naturally infected fish tissues. These changes included the necrosis of fish muscle bundles and a pronounced inflammatory reaction with muscular necrosis in the digestive tracts of experimentally infected pigeons.


Subject(s)
Fish Diseases , Trematode Infections , Animals , Cross-Sectional Studies , Fish Diseases/parasitology , Fish Diseases/immunology , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/immunology , Zoonoses/parasitology , Metacercariae , Cichlids/parasitology , Cichlids/immunology , Egypt , Fresh Water , Catfishes/parasitology , Tilapia/parasitology , Trematoda
19.
Parasit Vectors ; 17(1): 198, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689318

ABSTRACT

Canine leishmaniasis is a widespread disease on the American continent, with cases reported from Uruguay to the USA and Canada. While numerous Leishmania spp. have been reported in dogs in this region, Leishmania infantum and Leishmania braziliensis are the most common etiological agents of canine leishmaniasis from a continental perspective. Nonetheless, other species may predominate locally in some countries. The participation of dogs in the transmission cycle of various Leishmania spp. has long been speculated, but evidence indicates that their role as reservoirs of species other than L. infantum is negligible. Various native wildlife (e.g., small rodents, marsupials, sloths, and monkeys) are, in fact, the primary hosts of Leishmania spp. in the Americas. In this review, an updated list of Leishmania spp. infecting dogs in the Americas is presented, along with their distribution and clinical and zoonotic importance.


Subject(s)
Dog Diseases , Leishmaniasis , Zoonoses , Animals , Dogs , Humans , Americas/epidemiology , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Dog Diseases/parasitology , Dog Diseases/transmission , Dog Diseases/epidemiology , Leishmania/pathogenicity , Leishmaniasis/epidemiology , Leishmaniasis/transmission , Leishmaniasis/veterinary , Zoonoses/transmission , Zoonoses/parasitology
20.
Parasitology ; 151(4): 421-428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576256

ABSTRACT

Cystic echinococcosis (CE), caused by the larval stage of the cestode Echinococcus granulosus, is one of the most widespread zoonoses in Mediterranean countries. Baiting not-owned dogs with praziquantel (PZQ), due to their key role in the maintaining the transmission of CE, currently appears to be the most effective way to limit the transmission of CE, as well as an important aspect to introduce for the control of this parasitic disease. Therefore, this study aims to test 3 types of PZQ-based baits by evaluating different parameters (integrity over time, attractiveness and palatability for dogs, and mechanical resistance after release to different altitudes) and the bait acceptance in field by target animals, i.e. not-owned dogs, by using camera traps. The double PZQ-laced baits (with a double layer of highly palatable chews) showed the greatest resistance in the environment while also preserving the attractiveness and palatability up to 10 days, also withstood heights of 25 m, thus resulting as the most suitable also for drone delivery. The results on the field showed that most of the baits were consumed by not-owned dogs (82.2%), while the remaining were consumed by wild boars (8.9%), foxes (6.7%), badgers (1.1%) and hedgehogs (1.1%), confirming the specific and high attractiveness of the double PZQ-laced baits for the target population and highlights how an anthelmintic baiting programme may be a viable tool for the management of E. granulosus among free-ranging dog populations in endemic rural areas.


Subject(s)
Dog Diseases , Echinococcosis , Echinococcus granulosus , Praziquantel , Animals , Dogs , Echinococcus granulosus/drug effects , Echinococcosis/veterinary , Echinococcosis/prevention & control , Echinococcosis/parasitology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Praziquantel/pharmacology , Anthelmintics/pharmacology , Zoonoses/parasitology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...