Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Publication year range
1.
Anat Rec (Hoboken) ; 299(12): 1753-1778, 2016 12.
Article in English | MEDLINE | ID: mdl-27870351

ABSTRACT

The craniofacial skeleton is often described in the clinical literature as being comprised of vertical bony pillars, which transmit forces from the toothrow to the neurocranium as axial compressive stresses, reinforced transversely by buttresses. Here, we review the literature on bony microarchitecture, in vivo bone strain, and finite-element modeling of the facial skeleton of humans and nonhuman primates to address questions regarding the structural and functional existence of facial pillars and buttresses. Available bone material properties data do not support the existence of pillars and buttresses in humans or Sapajus apella. Deformation regimes in the zygomatic complex emphasize bending and shear, therefore conceptualizing the zygomatic complex of humans or nonhuman primates as a pillar obscures its patterns of stress, strain, and deformation. Human fossil relatives and chimpanzees exhibit strain regimes corroborating the existence of a canine-frontal pillar, but the notion of a zygomatic pillar has no support. The emerging consensus on patterns of strain and deformation in finite element models (FEMs) of the human facial skeleton corroborates hypotheses in the clinical literature regarding zygomatic complex function, and provide new insights into patterns of failure of titanium and resorbable plates in experimental studies. It is suggested that the "pillar and buttress" model of human craniofacial skeleton function be replaced with FEMs that more accurately and precisely represent in vivo function, and which can serve as the basis for future research into implants used in restoration of occlusal function and fracture repair. Anat Rec, 299:1753-1778, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bite Force , Mastication/physiology , Maxilla/physiology , Stress, Mechanical , Zygoma/physiology , Animals , Biomechanical Phenomena/physiology , Finite Element Analysis , Humans , Primates , Skull/physiology
2.
Int. j. morphol ; 31(4): 1386-1392, Dec. 2013. ilus
Article in English | LILACS | ID: lil-702322

ABSTRACT

This paper aimed to analyze stress distribution in human zygomatic pillar during masseter muscle contraction using three-dimensional finite element analysis. A three-dimensional model and hemi facial skull were produced based on CT-scan data. An adult male skull with structural anatomy integrity was used as model. Muscles forces were applied at origin of elevator muscles and supports was applied at the occlusal surfaces at first and second molars to simulate a masticatory load and stimulate the zygomatic pillar. Supports were applied to the occlusal contacts. Symmetry conditions were placed at the mid-sagittal plane. For the top and back cutting plane, constraints were used. Equivalent Von-Mises Stress and Maximum Principal Stress analysis were performed from the stress fields along the zygomatic pillar. It was represented by stress concentration at the alveolar process, zygomatic bone, frontal and temporal process of zygomatic bone and superciliary arch. Stress line indicates distribution of stress from maxilla toward the frontal and temporal bone. The stresses occurred due to resultant occlusal forces is mainly supported by the zygomatic bone, non-uniformly distributed and predominantly through the zygomatic pillar. This study contributed to better understanding of stress distribution in zygomatic pillar to understand the influence of chewing on zygomatic pillar morphology and also be useful for clinical practice.


El objetivo de este artículo fue analizar la distribución de la tensión en el pilar cigomático humano durante la contracción del músculo masetero utilizando análisis de elementos finitos tridimensionales. Un modelo de tres dimensiones de dientes del hemicráneo facial fueron producidos sobre la base de datos de CT-scan. Se utilizó como modelo un cráneo adulto de sexo masculino con la integridad de la anatomía estructural. Fuerzas musculares se aplicaron en el origen de los ascensores de los músculos de la mandíbula y soportes se aplicaron a la superficie oclusal del primer y segundo molar para simular una carga masticatoria y estimular el pilar cigomático. Condiciones de simetría se colocaron en el plano mediano. Se utilizaron restricciones en los planos superior y posterior. El análisis de las tensiones equivalentes von-Mises y máximo director se realizó a través del campo de esfuerzos a lo largo del pilar cigomático. Fue representada la concentración de esfuerzos en el proceso alveolar, hueso cigomático, proceso frontal y temporal del hueso cigomático y el arco superciliar. La línea de tensión indica la distribución de la tensión del maxilar hacia el hueso frontal y temporal. Las tensiones se produjeron debido a las fuerzas oclusales resultantes, que se apoyan principalmente por el hueso cigomático, distribuidas de manera no uniforme y sobre todo a través del pilar cigomático. Este estudio ha contribuido a una mejor comprensión de la distribución de la tensión en el pilar cigomático para entender la influencia de la masticación sobre la morfología de este pilar y ser de utilidad en la práctica clínica.


Subject(s)
Humans , Zygoma/anatomy & histology , Zygoma/physiology , Skull/anatomy & histology , Finite Element Analysis , Biomechanical Phenomena , Imaging, Three-Dimensional
3.
J Morphol ; 272(10): 1204-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21638306

ABSTRACT

Haitian species of the extinct ground sloth genus Neocnus (Mammalia: Pilosa: Megalonychidae) have previously been hypothesized to have a much reduced jugal bone and a correspondingly reduced masseter musculature but a paucity of specimens has prevented further investigation of this hypothesis. Recent discovery of jugal bones belonging to Haitian specimens of Neocnus within the University of Florida Museum collections enables the element to be more accurately described. The discovery also makes it possible to explore mastication in these sloths. Osteological characters related to feeding were examined, along with comparative estimations of bite force with the extant tree sloths, Bradypus and Choloepus, and their known dietary habits as a means to infer aspects of the paleodiet of Neocnus. There is a significant difference in moment arm calculations for m. masseter between predicted and actual jugals, but the overall significance for bite force is lost and hampered by small sample size. Neocnus demonstrates a variety of characters that are similar to those of Bradypus and not to Choloepus, which is a close phylogenetic relative. The masticatory musculature of Neocnus enabled a chewing cycle emphasizing a grinding combination of mesiodistal and linguobuccal movements of the molariform dentition. The orientations of m. masseter and m. temporalis are estimated to produce relatively high bite force ratios that imply a masticatory system with stronger versus faster components. Because of the similarity of bite forces and jaw mechanics to those of Bradypus, in addition to a number of osteological adaptations indicative of herbivorous grazers (elevated mandibular condyle, large and complex masseter, and robust angular process), the Haitian forms of Neocnus are considered to have been selective feeders with a folivorous diet.


Subject(s)
Bite Force , Diet , Mastication/physiology , Sloths/physiology , Zygoma/physiology , Animals , Fossils , Haiti , Jaw/physiology , Masseter Muscle/physiology , Temporal Muscle/physiology , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL