Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.008
Filter
1.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786090

ABSTRACT

The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.


Subject(s)
Blastocyst , Embryo Culture Techniques , Embryonic Development , Zygote , Animals , Cattle , Blastocyst/cytology , Blastocyst/metabolism , Zygote/cytology , Zygote/metabolism , Embryo Culture Techniques/methods , Female , Mitochondria/metabolism
2.
Open Biol ; 14(5): 230358, 2024 May.
Article in English | MEDLINE | ID: mdl-38689555

ABSTRACT

The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.


Subject(s)
Cell Nucleolus , Chromatin , Embryonic Development , Animals , Humans , Mice , Cell Nucleolus/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation, Developmental , Zygote/metabolism , Zygote/cytology
3.
Nature ; 625(7994): 401-409, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123678

ABSTRACT

DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.


Subject(s)
DNA Replication Timing , Embryo, Mammalian , Genome , Animals , Mice , Blastocyst/cytology , Blastocyst/metabolism , Chromatin/genetics , Epigenome/genetics , Genome/genetics , RNA Polymerase II/metabolism , Zygote/cytology , Zygote/growth & development , Zygote/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism
4.
Nature ; 605(7909): 315-324, 2022 05.
Article in English | MEDLINE | ID: mdl-35314832

ABSTRACT

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Subject(s)
Embryo, Mammalian , Embryonic Development , Pluripotent Stem Cells , Zygote , Humans , Chromosomal Proteins, Non-Histone/genetics , Embryo, Mammalian/cytology , Homeodomain Proteins/genetics , Pluripotent Stem Cells/cytology , Transcription Factors/genetics , Zygote/cytology
5.
J Assist Reprod Genet ; 39(1): 97-106, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34993708

ABSTRACT

PURPOSE: To study the morphometric and morphokinetic profiles of pronuclei (PN) between male and female human zygotes. METHOD(S): This retrospective cohort study included 94 consecutive autologous single day 5 transfer cycles leading to a singleton live birth. All oocytes were placed in the EmbryoScope + incubator post-sperm injection with all annotations performed retrospectively by one embryologist (L-SO). Timing parameters included 2nd polar body extrusion (tPB2), sperm-originated PN (tSPNa) or oocyte-originated PN (tOPNa) appearance, and PN fading (tPNF). Morphometrics were evaluated at 8 (stage 1), 4 (stage 2), and 0 h before PNF (stage 3), measuring PN area (um2), PN juxtaposition, and nucleolar precursor bodies (NPB) arrangement. RESULTS: Male zygotes had longer time intervals of tPB2_tSPNa than female zygotes (4.8 ± 0.2 vs 4.2 ± 0.1 h, OR = 1.442, 95% CI 1.009-2.061, p = 0.044). SPN increased in size from stage 1 through 2 to 3 (435.3 ± 7.2, 506.7 ± 8.0, and 556.3 ± 8.9 um2, p = 0.000) and OPN did similarly (399.0 ± 6.1, 464.3 ± 6.7, and 513.8 ± 6.5 um2, p = 0.000), with SPN being significantly larger than OPN at each stage (p < 0.05 respectively). More male than female zygotes reached central PN juxtaposition at stage 1 (76.7% vs 51.0%, p = 0.010), stage 2 (97.7% vs 86.3%, p = 0.048), and stage 3 (97.7% vs 86.3%, p = 0.048). More OPN showed aligned NPBs than in SPN at stage 1 only (44.7% vs 28.7%, p = 0.023). CONCLUSION(S): Embryos with different sexes display different morphokinetic and morphometric features at the zygotic stage. Embryo selection using such parameters may lead to unbalanced sex ratio in resulting offspring.


Subject(s)
Oocytes/cytology , Spermatozoa/cytology , Zygote/cytology , Adult , Blastomeres/cytology , Blastomeres/microbiology , Blastomeres/physiology , Cell Nucleus/microbiology , Female , Humans , Logistic Models , Male , Oocytes/microbiology , Retrospective Studies , Spermatozoa/microbiology , Time-Lapse Imaging/methods , Zygote/microbiology
6.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34747981

ABSTRACT

During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.


Subject(s)
Antigens/metabolism , Cell Cycle Proteins/metabolism , Homeostasis , Meiosis , Ploidies , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Spindle Pole Bodies/metabolism , Chromosomes, Fungal/metabolism , Spores, Fungal/metabolism , Zygote/cytology
7.
Fertil Steril ; 117(1): 213-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34548166

ABSTRACT

OBJECTIVE: To examine the cause of monopronucleated zygote (1PN) formation that includes both maternal and paternal genomes. DESIGN: Retrospective cohort study. SETTING: Private fertility clinic. PATIENT(S): A total of 44 1PN and 726 2-pronuclear zygotes from 702 patients were observed using 2 different time-lapse observation systems. INTERVENTION(S): Previously recorded time lapse data were reviewed to examine the mechanism of 1PN formation. MAIN OUTCOME MEASURE(S): The distance between the position of the second polar body extrusion and the fertilization cone or epicenter/starting position of the cytoplasmic wave was measured, and the consequent data were analyzed. Cytoplasmic waves were confirmed using vector analysis software. RESULT(S): The cut-off value for the difference in the distance between the position of the second polar body extrusion and the fertilization cone or the epicenter/starting position of the cytoplasmic wave was 17 µm (AUC: 0.987, 95% CI: 0.976-0.999) for the Embryo Scope and 18 µm (AUC: 0.972, 95% CI: 0.955-0.988) for the iBIS time-lapse observation systems. CONCLUSION(S): In this study, it was found with a high degree of accuracy that a monopronucleus is formed when the fusion of the sperm takes place within 18 µm from the point of the second polar body extrusion. The theoretical chance of 1PN occurrence after in vitro fertilization is 2.7% when the sperm is considered to be fused anywhere in the plasma membrane of an oocyte.


Subject(s)
Fertilization in Vitro , Genome, Human , Zygote/physiology , Adult , Cell Nucleus/genetics , Cohort Studies , Cytoplasm/genetics , Cytoplasm/metabolism , Embryonic Development/genetics , Female , Humans , Male , Polar Bodies/metabolism , Retrospective Studies , Sex Chromosomes/genetics , Sperm Injections, Intracytoplasmic , Time-Lapse Imaging , Zygote/cytology
8.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502430

ABSTRACT

The fertilization of freshwater fish occurs in an environment that may negatively affect the gametes; therefore, the specific mechanisms triggering the encounters of gametes would be highly expedient. The egg and ovarian fluid are likely the major sources of these triggers, which we confirmed here for rainbow trout (Oncorhynchus mykiss). The ovarian fluid affected significantly spermatozoa performance: it supported high velocity for a longer period and changed the motility pattern from tumbling in water to straightforward moving in the ovarian fluid. Rainbow trout ovarian fluid induced a trapping chemotaxis-like effect on activated male gametes, and this effect depended on the properties of the activating medium. The interaction of the spermatozoa with the attracting agents was accompanied by the "turn-and-run" behavior involving asymmetric flagellar beating and Ca2+ concentration bursts in the bent flagellum segment, which are characteristic of the chemotactic response. Ovarian fluid created the optimal environment for rainbow trout spermatozoa performance, and the individual peculiarities of the egg (ovarian fluid)-sperm interaction reflect the specific features of the spawning process in this species.


Subject(s)
Chemotaxis/physiology , Fertilization/physiology , Oncorhynchus mykiss/metabolism , Ovary/metabolism , Spermatozoa/metabolism , Zygote/metabolism , Animals , Calcium Signaling/physiology , Female , Male , Ovary/cytology , Spermatozoa/cytology , Zygote/cytology
9.
STAR Protoc ; 2(3): 100736, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34430911

ABSTRACT

It is often necessary to learn whether macromolecules occupy a fixed place in cells. This protocol makes it possible to learn whether individual nucleolar proteins in S. cerevisiae remain in place or depart from and return to the nucleolus. The protocol uses early zygotes in which parental nucleoli are separate for at least one hour. The protocol demonstrates that the localization of many nucleolar proteins is in fact highly dynamic. Photobleaching is not required. For complete details on the use and execution of this protocol, please refer to Tartakoff et al. (2021).


Subject(s)
Cell Nucleolus/metabolism , Cytological Techniques/methods , Nuclear Proteins/metabolism , Saccharomyces cerevisiae , Zygote , Cell Nucleolus/chemistry , Nuclear Proteins/analysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Zygote/cytology , Zygote/metabolism
10.
Cell Rep ; 36(1): 109326, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233197

ABSTRACT

Coordination between cell differentiation and proliferation during development requires the balance between asymmetric and symmetric modes of cell division. However, the cellular intrinsic cue underlying the choice between these two division modes remains elusive. Here, we show evidence in Caenorhabditis elegans that the invariable lineage of the division modes is specified by the balance between antagonizing complexes of partitioning-defective (PAR) proteins. By uncoupling unequal inheritance of PAR proteins from that of fate determinants during cell division, we demonstrate that changes in the balance between PAR-2 and PAR-6 can be sufficient to re-program the division modes from symmetric to asymmetric and vice versa in two daughter cells. The division mode adopted occurs independently of asymmetry in cytoplasmic fate determinants, cell-size asymmetry, and cell-cycle asynchrony between sister cells. We propose that the balance between PAR proteins represents an intrinsic self-organizing cue for the specification of the two division modes during development.


Subject(s)
Asymmetric Cell Division , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Embryo, Nonmammalian/cytology , Embryonic Development , Animals , Cell Lineage , Cell Polarity , Computer Simulation , Embryo, Nonmammalian/metabolism , Models, Biological , Zygote/cytology , Zygote/metabolism
11.
Nat Genet ; 53(8): 1207-1220, 2021 08.
Article in English | MEDLINE | ID: mdl-34267371

ABSTRACT

In mammalian embryos, proper zygotic genome activation (ZGA) underlies totipotent development. Double homeobox (DUX)-family factors participate in ZGA, and mouse Dux is required for forming cultured two-cell (2C)-like cells. Remarkably, in mouse embryonic stem cells, Dux is activated by the tumor suppressor p53, and Dux expression promotes differentiation into expanded-fate cell types. Long-read sequencing and assembly of the mouse Dux locus reveals its complex chromatin regulation including putative positive and negative feedback loops. We show that the p53-DUX/DUX4 regulatory axis is conserved in humans. Furthermore, we demonstrate that cells derived from patients with facioscapulohumeral muscular dystrophy (FSHD) activate human DUX4 during p53 signaling via a p53-binding site in a primate-specific subtelomeric long terminal repeat (LTR)10C element. In summary, our work shows that p53 activation convergently evolved to couple p53 to Dux/DUX4 activation in embryonic stem cells, embryos and cells from patients with FSHD, potentially uniting the developmental and disease regulation of DUX-family factors and identifying evidence-based therapeutic opportunities for FSHD.


Subject(s)
Homeodomain Proteins/genetics , Mouse Embryonic Stem Cells/physiology , Muscular Dystrophy, Facioscapulohumeral/pathology , Tumor Suppressor Protein p53/genetics , Animals , Cell Differentiation/genetics , Cellular Reprogramming , DNA Damage , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Humans , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Muscular Dystrophy, Facioscapulohumeral/genetics , Nuclear Proteins/genetics , Pluripotent Stem Cells/physiology , Transcription Factors/genetics , Tumor Suppressor Protein p53/metabolism , Zygote/cytology
12.
Curr Top Dev Biol ; 145: 167-204, 2021.
Article in English | MEDLINE | ID: mdl-34074529

ABSTRACT

The fertilized frog egg contains all the materials needed to initiate development of a new organism, including stored RNAs and proteins deposited during oogenesis, thus the earliest stages of development do not require transcription. The onset of transcription from the zygotic genome marks the first genetic switch activating the gene regulatory network that programs embryonic development. Zygotic genome activation occurs after an initial phase of transcriptional quiescence that continues until the midblastula stage, a period called the midblastula transition, which was first identified in Xenopus. Activation of transcription is programmed by maternally supplied factors and is regulated at multiple levels. A similar switch exists in most animals and is of great interest both to developmental biologists and to those interested in understanding nuclear reprogramming. Here we review in detail our knowledge on this major switch in transcription in Xenopus and place recent discoveries in the context of a decades old problem.


Subject(s)
Genome/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , Zygote/metabolism , Animals , Oogenesis , Zygote/cytology
13.
Sci Rep ; 11(1): 11167, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045607

ABSTRACT

In multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


Subject(s)
Blastomeres/cytology , Embryo, Mammalian/cytology , Embryonic Development/physiology , Totipotent Stem Cells/cytology , Zygote/cytology , Animals , Blastocyst/cytology , Embryo Culture Techniques , Mice
14.
Nat Genet ; 53(4): 539-550, 2021 04.
Article in English | MEDLINE | ID: mdl-33821003

ABSTRACT

Parental epigenomes are established during gametogenesis. While they are largely reset after fertilization, broad domains of Polycomb repressive complex 2 (PRC2)-mediated formation of lysine 27-trimethylated histone H3 (H3K27me3) are inherited from oocytes in mice. How maternal H3K27me3 is established and inherited by embryos remains elusive. Here, we show that PRC1-mediated formation of lysine 119-monoubiquititinated histone H2A (H2AK119ub1) confers maternally heritable H3K27me3. Temporal profiling of H2AK119ub1 dynamics revealed that atypically broad H2AK119ub1 domains are established, along with H3K27me3, during oocyte growth. From the two-cell stage, H2AK119ub1 is progressively deposited at typical Polycomb targets and precedes H3K27me3. Reduction of H2AK119ub1 by depletion of Polycomb group ring finger 1 (PCGF1) and PCGF6-essential components of variant PRC1 (vPRC1)-leads to H3K27me3 loss at a subset of genes in oocytes. The gene-selective H3K27me3 deficiency is irreversibly inherited by embryos, causing loss of maternal H3K27me3-dependent imprinting, embryonic sublethality and placental enlargement at term. Collectively, our study unveils preceding dynamics of H2AK119ub1 over H3K27me3 at the maternal-to-zygotic transition, and identifies PCGF1/6-vPRC1 as an essential player in maternal epigenetic inheritance.


Subject(s)
Embryo, Mammalian/metabolism , Epigenesis, Genetic , Histones/genetics , Maternal Inheritance , Polycomb Repressive Complex 1/genetics , Animals , Embryo, Mammalian/cytology , Epigenome , Female , Fertilization/genetics , Histones/metabolism , Lysine/metabolism , Male , Mice , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Ubiquitination , Zygote/cytology , Zygote/growth & development , Zygote/metabolism
15.
Nat Genet ; 53(4): 551-563, 2021 04.
Article in English | MEDLINE | ID: mdl-33821005

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1/2) maintain transcriptional silencing of developmental genes largely by catalyzing the formation of mono-ubiquitinated histone H2A at lysine 119 (H2AK119ub1) and trimethylated histone H3 at lysine 27 (H3K27me3), respectively. How Polycomb domains are reprogrammed during mammalian preimplantation development remains largely unclear. Here we show that, although H2AK119ub1 and H3K27me3 are highly colocalized in gametes, they undergo differential reprogramming dynamics following fertilization. H3K27me3 maintains thousands of maternally biased domains until the blastocyst stage, whereas maternally biased H2AK119ub1 distribution in zygotes is largely equalized at the two-cell stage. Notably, while maternal PRC2 depletion has a limited effect on global H2AK119ub1 in early embryos, it disrupts allelic H2AK119ub1 at H3K27me3 imprinting loci including Xist. By contrast, acute H2AK119ub1 depletion in zygotes does not affect H3K27me3 imprinting maintenance, at least by the four-cell stage. Importantly, loss of H2AK119ub1, but not H3K27me3, causes premature activation of developmental genes during zygotic genome activation (ZGA) and subsequent embryonic arrest. Thus, our study reveals distinct dynamics and functions of H3K27me3 and H2AK119ub1 in mouse preimplantation embryos.


Subject(s)
Blastocyst/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Histones/genetics , Maternal Inheritance , RNA, Long Noncoding/genetics , Animals , Blastocyst/cytology , Female , Fertilization/genetics , Histones/metabolism , Lysine/metabolism , Male , Mice , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , Paternal Inheritance , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Long Noncoding/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Ubiquitination , Zygote/cytology , Zygote/growth & development , Zygote/metabolism
16.
Reproduction ; 161(6): 697-707, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33835048

ABSTRACT

Elucidating the mechanisms underpinning fertilisation is essential to optimising IVF procedures. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. HIRA is the main H3.3 chaperone governing this protamine-to-histone exchange. Failure of this step results in abnormally fertilised zygotes containing only one pronucleus (1PN), in contrast to normal two-pronuclei (2PN) zygotes. 1PN zygotes are frequently observed in IVF treatments, but the genotype-phenotype correlation remains elusive. We investigated the maternal functions of two other molecules of the HIRA complex, Cabin1 and Ubn1, in mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed an abnormal 1PN zygote phenotype. We then studied human 1PN zygotes and found that the HIRA complex was absent in 1PN zygotes that lacked the male pronucleus. This shows that the role of the HIRA complex in male pronucleus formation potentially has coherence from mice to humans. Furthermore, rescue experiments in mouse showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of HIRA. We have demonstrated that HIRA complex regulates male pronucleus formation in mice and is implicated in humans, that both CABIN1 and UBN1 components of the HIRA complex are equally essential for male pronucleus formation, and that rescue is feasible.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Nucleus/genetics , Chromatin Assembly and Disassembly , Histone Chaperones/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Zygote/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/genetics , Female , Fertilization in Vitro , Histone Chaperones/genetics , Histones/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , Phenotype , Transcription Factors/genetics , Zygote/cytology
17.
Cell Reprogram ; 23(2): 99-107, 2021 04.
Article in English | MEDLINE | ID: mdl-33861636

ABSTRACT

Zygotic epigenetic reprogramming is the major initial event in embryo development to acquire a totipotent potential. However, the patterns of epigenetic modifications in bovine zygote were not well clarified, especially in the first cell cycle of bovine somatic cell nuclear transfer (SCNT) embryos. This study was conducted to examine the patterns of DNA methylation (5-methylcytosine [5mc] and 5-hydroxymethylcytosine [5hmc]) and histone H3 lysine 9 methylation (H3K9m2 and H3K9m3) in the first cell cycle of bovine in vitro fertilization (IVF) and SCNT embryos. In bovine zygotic development, the 5mc in the paternal pronucleus (pPN) undergoes partial demethylation from PN1 to PN3, and remethylation from PN4 to PN5, while 5hmc exhibits absolutely different patterns. The 5mc in SCNT embryos underwent much more dramatic demethylation and much earlier de novo methylation compared with their IVF counterparts, while 5hmc stayed stable from PN1 to PN4, and significantly increased at PN5, which made significantly higher level of 5mc and 5hmc at the end of the first cell cycle in SCNT embryos. Different H3K9m2 and H3K9m3 patterns were also observed between IVF and SCNT embryos. H3K9m2 and H3K9m3 asymmetrically distributed in parental genomes in IVF zygote, highly present in the maternal pronucleus, whereas faintly stained in the pPN. H3K9m2 and H3K9m3 in the somatic cell genome were gradually demethylated from PN1-PN4, and significantly increased at the end of the first cell cycle. TET3 dioxygenase was highly present in the first cell cycle of embryos compared with TET1 and TET2. Our results showed that SCNT embryos underwent aberrant epigenetic reprogramming in the first cell cycle; much more dramatic demethylation and significant higher remethylation were observed compared with IVF counterparts.


Subject(s)
Cell Cycle , Cellular Reprogramming , DNA Methylation , Embryo, Mammalian/cytology , Embryonic Development , Epigenesis, Genetic , Nuclear Transfer Techniques , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/chemistry , Animals , Cattle , Cell Nucleus/genetics , Cell Nucleus/metabolism , Embryo, Mammalian/physiology , Fertilization in Vitro , Gene Expression Regulation, Developmental , Histones/genetics , Histones/metabolism , Zygote/cytology , Zygote/physiology
18.
Nature ; 592(7852): 80-85, 2021 04.
Article in English | MEDLINE | ID: mdl-33692543

ABSTRACT

Placentas can exhibit chromosomal aberrations that are absent from the fetus1. The basis of this genetic segregation, which is known as confined placental mosaicism, remains unknown. Here we investigated the phylogeny of human placental cells as reconstructed from somatic mutations, using whole-genome sequencing of 86 bulk placental samples (with a median weight of 28 mg) and of 106 microdissections of placental tissue. We found that every bulk placental sample represents a clonal expansion that is genetically distinct, and exhibits a genomic landscape akin to that of childhood cancer in terms of mutation burden and mutational imprints. To our knowledge, unlike any other healthy human tissue studied so far, the placental genomes often contained changes in copy number. We reconstructed phylogenetic relationships between tissues from the same pregnancy, which revealed that developmental bottlenecks genetically isolate placental tissues by separating trophectodermal lineages from lineages derived from the inner cell mass. Notably, there were some cases with full segregation-within a few cell divisions of the zygote-of placental lineages and lineages derived from the inner cell mass. Such early embryonic bottlenecks may enable the normalization of zygotic aneuploidy. We observed direct evidence for this in a case of mosaic trisomic rescue. Our findings reveal extensive mutagenesis in placental tissues and suggest that mosaicism is a typical feature of placental development.


Subject(s)
Mosaicism , Mutagenesis , Mutation , Placenta/metabolism , Biopsy , Blastocyst Inner Cell Mass/cytology , Female , Genome, Human/genetics , Humans , Mesoderm/cytology , Mutation Rate , Placenta/cytology , Pregnancy , Trisomy/genetics , Trophoblasts/cytology , Trophoblasts/metabolism , Zygote/cytology
19.
Sci Rep ; 11(1): 3142, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542461

ABSTRACT

Oocyte composition can directly influence offspring fitness, particularly in oviparous species such as most insects, where it is the primary form of parental investment. Oocyte production is also energetically costly, dependent on female condition and responsive to external cues. Here, we investigated whether mating influences mature oocyte composition in Drosophila melanogaster using a quantitative proteomic approach. Our analyses robustly identified 4,485 oocyte proteins and revealed that stage-14 oocytes from mated females differed significantly in protein composition relative to oocytes from unmated females. Proteins forming a highly interconnected network enriched for translational machinery and transmembrane proteins were increased in oocytes from mated females, including calcium binding and transport proteins. This mating-induced modulation of oocyte maturation was also significantly associated with proteome changes that are known to be triggered by egg activation. We propose that these compositional changes are likely to have fitness consequences and adaptive implications given the importance of oocyte protein composition, rather than active gene expression, to the maternal-to-zygotic transition and early embryogenesis.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Oocytes/metabolism , Oogenesis/genetics , Proteome/genetics , Zygote/metabolism , Animals , Calcium-Binding Proteins/classification , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , Copulation/physiology , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Fertilization/genetics , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Genetic Fitness , Male , Membrane Proteins/classification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Annotation , Oocytes/cytology , Oocytes/growth & development , Protein Biosynthesis , Proteome/classification , Proteome/metabolism , Spermatozoa/cytology , Spermatozoa/physiology , Zygote/cytology , Zygote/growth & development
20.
Development ; 148(5)2021 03 09.
Article in English | MEDLINE | ID: mdl-33558388

ABSTRACT

CRISPR-stop converts protein-coding sequences into stop codons, which, in the appropriate location, results in a null allele. CRISPR-stop induction in one-cell-stage zygotes generates Founder 0 (F0) mice that are homozygous mutants; this avoids mouse breeding and serves as a rapid screening approach for nonlethal genes. However, loss of function of 25% of mammalian genes causes early lethality. Here, we induced CRISPR-stop in one of the two blastomeres of the zygote, a method we name mosaic CRISPR-stop, to produce mosaic Atoh1 and Sox10 F0 mice; these mice not only survived longer than regular Atoh1/Sox10 knockout mice but also displayed their recognized cochlear phenotypes. Moreover, by using mosaic CRISPR-stop, we uncovered a previously unknown role of another lethal gene, Rbm24, in the survival of cochlear outer hair cells (OHCs), and we further validated the importance of Rbm24 in OHCs by using our Rbm24 conditional knockout model. Together, our results demonstrated that mosaic CRISPR-stop is reliable and rapid, and we believe this method will facilitate rapid genetic screening of developmentally lethal genes in the mouse inner ear and also in other organs.


Subject(s)
CRISPR-Cas Systems/genetics , Genes, Essential/genetics , RNA, Guide, Kinetoplastida/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Blastomeres/cytology , Blastomeres/metabolism , Codon, Nonsense , Codon, Terminator , Hair Cells, Auditory, Outer/cytology , Hair Cells, Auditory, Outer/metabolism , Mice , Mice, Knockout , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SOXE Transcription Factors/deficiency , SOXE Transcription Factors/genetics , Zygote/cytology , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...