Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Bioresour Technol ; 402: 130798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705212

ABSTRACT

Biosensor-based high-throughput screening is efficient for improving industrial microorganisms. There is a severe shortage of human milk oligosaccharides (HMOs) biosensors. This study established a 3-fucosyllactose (3-FL, a kind of HMOs) whole-cell biosensor by coupling cell growth with production. To construct and optimize the biosensor, an Escherichia coli 3-FL producer was engineered by deleting the manA, yihS and manX genes, directing the mannose flux solely to 3-FL synthesis. Then, an α-L-fucosidase was introduced to hydrolyze 3-FL to fucose which was used as the only carbon source for cell growth. Using the biosensor, the 3-FL production of a screened mutant was improved by 25 % to 42.05 ± 1.28 g/L. The productivity reached 1.17 g/L/h, the highest level reported by now. The csrB mutant obtained should be a new clue for the 3-FL overproduction mechanism. In summary, this study provided a novel approach to construct HMOs biosensors for strain improvement.


Subject(s)
Biosensing Techniques , Escherichia coli , Trisaccharides , Biosensing Techniques/methods , Escherichia coli/metabolism , Escherichia coli/genetics , Trisaccharides/metabolism , High-Throughput Screening Assays/methods , Mutation , Humans , Milk, Human/chemistry , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/genetics , Oligosaccharides
2.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771321

ABSTRACT

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Milk, Human , Trisaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Humans , Trisaccharides/metabolism , Milk, Human/chemistry , Lactose/metabolism , Oligosaccharides/metabolism , Mutagenesis, Site-Directed , Infant , Fucose/metabolism
3.
J Agric Food Chem ; 72(19): 11013-11028, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691641

ABSTRACT

Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.


Subject(s)
Milk, Human , Oligosaccharides , alpha-L-Fucosidase , Milk, Human/chemistry , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/genetics , Glycosylation , Hydrolysis , Fucose/metabolism , Fucose/chemistry , Hydrogen-Ion Concentration , Biocatalysis
4.
Enzyme Microb Technol ; 178: 110445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581868

ABSTRACT

The elucidation of the physicochemical properties of glycosidases is essential for their subsequent technological application, which may include saccharide hydrolysis processes and oligosaccharide synthesis. As the application of cloning, purification and enzymatic immobilization methods can be time consuming and require a heavy financial investment, this study has validated the recombinant production of the set of Lacticaseibacillus rhamnosus fucosidases fused with Usp45 and SpaX anchored to the cell wall of Lacticaseibacillus cremoris subsp cremoris MG1363, with the aim of avoiding the purification and stabilization steps. The cell debris harboring the anchored AlfA, AlfB and AlfC fucosidases showed activity against p-nitrophenyl α-L-fucopyranoside of 6.11 ±â€¯0.36, 5.81 ±â€¯0.29 and 9.90 ±â€¯0.58 U/mL, respectively, and exhibited better thermal stability at 50 °C than the same enzymes in their soluble state. Furthermore, the anchored AlfC fucosidase transfucosylated different acceptor sugars, achieving fucose equivalent concentrations of 0.94 ±â€¯0.09 mg/mL, 4.11 ±â€¯0.21 mg/mL, and 4.08 ±â€¯0.15 mg/mL of fucosylgalatose, fucosylglucose and fucosylsucrose, respectively.


Subject(s)
Bacterial Proteins , Enzyme Stability , Enzymes, Immobilized , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/chemistry , alpha-L-Fucosidase/metabolism , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/isolation & purification , alpha-L-Fucosidase/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/isolation & purification
5.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38299857

ABSTRACT

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Subject(s)
Akkermansia , Trisaccharides , alpha-L-Fucosidase , Infant , Humans , Akkermansia/metabolism , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Phylogeny , Oligosaccharides/metabolism , beta-Galactosidase/genetics
6.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255883

ABSTRACT

In various life forms, fucose-containing glycans play vital roles in immune recognition, developmental processes, plant immunity, and host-microbe interactions. Together with glucose, galactose, N-acetylglucosamine, and sialic acid, fucose is a significant component of human milk oligosaccharides (HMOs). Fucosylated HMOs benefit infants by acting as prebiotics, preventing pathogen attachment, and potentially protecting against infections, including HIV. Although the need for fucosylated derivatives is clear, their availability is limited. Therefore, synthesis methods for various fucosylated oligosaccharides are explored, employing enzymatic approaches and α-L-fucosidases. This work aimed to characterise α-L-fucosidases identified in an alpaca faeces metagenome. Based on bioinformatic analyses, they were confirmed as members of the GH29A subfamily. The recombinant α-L-fucosidases were expressed in Escherichia coli and showed hydrolytic activity towards p-nitrophenyl-α-L-fucopyranoside and 2'-fucosyllactose. Furthermore, the enzymes' biochemical properties and kinetic characteristics were also determined. All four α-L-fucosidases could catalyse transfucosylation using a broad diversity of fucosyl acceptor substrates, including lactose, maltotriose, L-serine, and L-threonine. The results contribute insights into the potential use of α-L-fucosidases for synthesising fucosylated amino acids.


Subject(s)
Camelids, New World , Infant , Animals , Humans , Fucose , Metagenome , alpha-L-Fucosidase/genetics , Escherichia coli/genetics , Feces , Lactose
7.
Int J Mol Sci ; 24(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37511315

ABSTRACT

2'-fucosyllactose (2'FL) is an important nutrient in human milk that stimulates beneficial microbiota and prevents infection. α-L-fucosidase is a promising component for 2'FL synthesis. In this study, a soil-oriented α-L-fucosidase-producing strain from Enterococcus gallinarum ZS1 was isolated. Escherichia coli was employed as a host for cloning and expressing the α-L-fucosidase gene (entfuc). The EntFuc was predicted as a member of the GH29 family with a molecular mass of 58 kDa. The optimal pH and temperature for the activity of EntFuc were pH 7.0 and 30 °C, respectively. The enzyme exhibited a strictly specific activity for 4-Nitrophenyl-α-L-fucopyranoside (pNP-Fuc) and had a negligible effect on hydrolyzing 2'FL. EntFuc could catalyze the synthesis of 2'FL via transfucosylation action from pNP-Fuc and lactose. The yield of 2'FL reached 35% under optimal conditions. This study indicated that EntFuc with a high conversion rate is a promising enzyme source for the biosynthesis of 2'FL.


Subject(s)
Oligosaccharides , alpha-L-Fucosidase , Humans , alpha-L-Fucosidase/genetics , Trisaccharides , Milk, Human/chemistry , Escherichia coli
8.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37115252

ABSTRACT

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Subject(s)
Malus , Pedobacter , Infant , Humans , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Malus/metabolism , Lactose/metabolism , Oligosaccharides/metabolism
10.
Essays Biochem ; 67(3): 399-414, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36805644

ABSTRACT

Fucose is a monosaccharide commonly found in mammalian, insect, microbial and plant glycans. The removal of terminal α-l-fucosyl residues from oligosaccharides and glycoconjugates is catalysed by α-l-fucosidases. To date, glycoside hydrolases (GHs) with exo-fucosidase activity on α-l-fucosylated substrates (EC 3.2.1.51, EC 3.2.1.-) have been reported in the GH29, GH95, GH139, GH141 and GH151 families of the Carbohydrate Active Enzymes (CAZy) database. Microbes generally encode several fucosidases in their genomes, often from more than one GH family, reflecting the high diversity of naturally occuring fucosylated structures they encounter. Functionally characterised microbial α-l-fucosidases have been shown to act on a range of substrates with α-1,2, α-1,3, α-1,4 or α-1,6 fucosylated linkages depending on the GH family and microorganism. Fucosidases show a modular organisation with catalytic domains of GH29 and GH151 displaying a (ß/α)8-barrel fold while GH95 and GH141 show a (α/α)6 barrel and parallel ß-helix fold, respectively. A number of crystal structures have been solved in complex with ligands, providing structural basis for their substrate specificity. Fucosidases can also be used in transglycosylation reactions to synthesise oligosaccharides. This mini review provides an overview of the enzymatic and structural properties of microbial α-l-fucosidases and some insights into their biological function and biotechnological applications.


Subject(s)
Oligosaccharides , alpha-L-Fucosidase , Animals , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/metabolism , Oligosaccharides/chemistry , Fucose/chemistry , Substrate Specificity , Mammals/metabolism
11.
Biochem Biophys Res Commun ; 645: 40-46, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36680935

ABSTRACT

Up to date, the reported fucosidases generally show poor activities toward the IgG core-fucose, which limits the efficiency of ENGase-catalyzed glycoengineering process. However, EndoS or EndoS2 owns excellent activity and great selectivity towards the N-glycosylation of IgGs, and their non-catalytic domains are deduced to have specific interactions to IgG Fc domain that result in the great activity and selectivity. Herein, we constructed a series fusion protein of AlfC (an α-l-fucosidase from Lactobacillus casei BL23) with EndoS/S2 non-catalytic domain by replacing the catalytic GH (glycan hydrolase) domain of EndoS/S2 with the AlfC. We found that all these fused AlfCs showed significantly enhanced defucosylation activity toward the deglycosylated IgGs (Fucα1,6GlcNAc-IgG). We also performed the kinetic study of these fusion enzymes, and our results tend to tell that the EndoS-based fusion proteins have higher kcat values while the EndoS2-based ones possess lower Km values other than higher kcat. Conclusively, our research provides an effective approach to improve the activity of AlfC and remarkably shortened the defucosylation process within several minutes, which will significantly promote the development of glycoengineered antibodies in the future.


Subject(s)
Polysaccharides , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Polysaccharides/metabolism , Antibodies, Monoclonal , Immunoglobulin G/metabolism
12.
Appl Microbiol Biotechnol ; 106(24): 8067-8077, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36370158

ABSTRACT

This study describes the molecular identification, biochemical characterization, and stabilization of three recombinant AlfA, AlfB, and AlfC fucosidases from Lacticaseibacillus rhamnosus INIA P603. Even though previous studies revealed the presence of fucosidase activity in L. rhamnosus extracts, the identification of the fucosidases, their physicochemical properties, and the substrate spectrum remained unknown. Although the presence of alfB is not common in strains of L. rhamnosus, fucosidases from L. rhamnosus INIA P603 were selected because this strain exhibited higher fucosidase activity in culture and the complete set of fucosidases. A high yield of purified recombinant AlfA, AlfB, and AlfC fucosidases was obtained (8, 12, and 18 mg, respectively). AlfA, AlfB, and AlfC showed their optimal activities at pH 5.0 and 4.0 at 60 °C, 40 °C, and 50 °C, respectively. Unlike 3-fucosyllactose, all three recombinant fucosidases were able to hydrolyze 2'-fucosyllactose (2'-FL), and their activities were improved through their immobilization on agarose supports. Nevertheless, immobilized AlfB exhibited the highest hydrolysis, releasing 39.6 µmol of fucose mg enzyme-1 min-1. Only the immobilized AlfB was able to synthetize 2'-FL. In conclusion, the enzymatic properties elucidated in this study support the potential ability of fucosidases from L. rhamnosus INIA P603 to hydrolyze fucosylated substrates as well as justifying interest for further research into AlfB for its application to catalyze the synthesis of fucosylated prebiotics. KEY POINTS: • Few strains of L. rhamnosus exhibited alfB on their chromosomes. • Fucosidases from L. rhamnosus INIA P603 were characterized and stabilized. • Although all the fucosidases hydrolyzed 2'-FL, only AlfB transfucosylated lactose.


Subject(s)
Lacticaseibacillus rhamnosus , alpha-L-Fucosidase , alpha-L-Fucosidase/genetics , Lacticaseibacillus
13.
Turk J Pediatr ; 64(4): 795-803, 2022.
Article in English | MEDLINE | ID: mdl-36082656

ABSTRACT

BACKGROUND: Fucosidosis is a rare, autosomal recessive lysosomal storage disease caused by alpha L- fucosidase enzyme deficiency in all tissues. Here, we identify a patient with a novel homozygous pathogenic variant and atypical clinical findings and summarized the clinical and molecular features of Turkish patients reported in the literature and present. CASE: The patient was born to consangineous parents at the 28th week of gestation. He had developmental delay that was attributed to prematurity. At he age of 2.5 years, brain magnetic resonans imaging revealed hyperintensities of symmetrical periventricular, subcortical, centrum semiovale and corona radiata regions on T2 and FLAIR weighted images. He developed seizures and showed developmental regression at he age of 3,5 years. Beside, coarse facial features and hepatomegaly were detected on phsyical examination. Lysosomal enzyme analysis revelaed alfa fucosidase deficiency and molecular genetic analysis identified a novel homozygous pathogenic p. Lys431 fs variant in FUCA1 gene. CONCLUSIONS: In Turkish patients no distinguishable clinical and radiologic finding could be established. Molecular analysis was performed in few patients. Increasing of molecular and biochemical facilities might enable to make diagnosis and increase the prevalence of the disease in countries with high rate of consanguineous marriages. Moreover, it will provide genetic counseling, and enlighten the therapeutic effects of hematopoietic stem cell transplantation.


Subject(s)
Fucosidosis , Brain/pathology , Child, Preschool , Fucosidosis/diagnosis , Fucosidosis/genetics , Fucosidosis/therapy , Homozygote , Humans , Male , alpha-L-Fucosidase/genetics
14.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35943155

ABSTRACT

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Subject(s)
Blood Group Antigens , Gastrointestinal Microbiome , Animals , Blood Group Antigens/analysis , Blood Group Antigens/metabolism , Fucose/analysis , Fucose/chemistry , Fucose/metabolism , Glycoconjugates/analysis , Glycoconjugates/metabolism , Humans , Infant , Infant, Newborn , Mammals/genetics , Mammals/metabolism , Metagenome , Milk, Human/chemistry , Milk, Human/metabolism , Oligosaccharides/analysis , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Polysaccharides , alpha-L-Fucosidase/chemistry , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism
15.
Structure ; 30(10): 1443-1451.e5, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35907402

ABSTRACT

Enzymatic hydrolysis of α-L-fucose from fucosylated glycoconjugates is consequential in bacterial infections and the neurodegenerative lysosomal storage disorder fucosidosis. Understanding human α-L-fucosidase catalysis, in an effort toward drug design, has been hindered by the absence of three-dimensional structural data for any animal fucosidase. Here, we have used cryoelectron microscopy (cryo-EM) to determine the structure of human lysosomal α-L-fucosidase (FucA1) in both an unliganded state and in complex with the inhibitor deoxyfuconojirimycin. These structures, determined at 2.49 Å resolution, reveal the homotetrameric structure of FucA1, the architecture of the catalytic center, and the location of both natural population variations and disease-causing mutations. Furthermore, this work has conclusively identified the hitherto contentious identity of the catalytic acid/base as aspartate-276, representing a shift from both the canonical glutamate acid/base residue and a previously proposed glutamate residue. These findings have furthered our understanding of how FucA1 functions in both health and disease.


Subject(s)
Fucose , alpha-L-Fucosidase , Aspartic Acid , Catalysis , Cryoelectron Microscopy , Glutamates , Glycoconjugates , Humans , alpha-L-Fucosidase/genetics
16.
BMC Pediatr ; 22(1): 403, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35820891

ABSTRACT

BACKGROUND: Fucosidosis is one of the rare autosomal recessive lysosomal storage diseases (LSDs) attributed to FUCA1 variants causing the deficiency of α-L-fucosidase in vivo. Α-L-fucosidase deficiency will cause excessive accumulation of fucosylated glycoproteins and glycolipids, which eventually leads to dysfunction in all tissue systems and presents with multiple symptoms. Fucosidosis is a rare disease which is approximately 120 cases have been reported worldwide (Wang, L. et al., J Int Med Res 48, 1-6, 2020). The number of reported cases in China is no more than 10 (Zhang, X. et al., J Int Med Res 49:3000605211005975, 2021). CASE PRESENTATION: The patient was an 8-year-old Chinese boy who presented with postnatal motor retardation, intellectual disability, short stature, language development retardation, coarse facial features, hepatomegaly, and diffuse angiokeratoma of both palms. His genetic testing showed the presence of a homozygous pathogenic variant (c.671delC) in the FUCA1 gene. In addition, the enzymatic activity of α-L-fucosidase was low. Ultimately, the patient was diagnosed with fucosidosis. CONCLUSIONS: Fucosidosis is a rare lysosomal storage disease because of FUCA1 variants that cause the deficiency of α-L-fucosidase in vivo. An explicit diagnosis requires a combination of clinical manifestations, imaging examination, genetic testing and enzyme activity analysis. Early diagnosis plays an important role in fucosidosis.


Subject(s)
Fucosidosis , Asian People , Child , Fucosidosis/diagnosis , Fucosidosis/genetics , Homozygote , Humans , Male , Mutation , alpha-L-Fucosidase/genetics
17.
Biosci Biotechnol Biochem ; 86(10): 1413-1416, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-35867865

ABSTRACT

Deletion of α-1,3/4-fucosidase activity in Arabidopsis thaliana resulted in the accumulation of GN1-type free N-glycans with the Lewis a epitope (GN1-FNG). This suggests that the release of α-fucose residue(s) may trigger rapid degradation of the plant complex-type (PCT) GN1-FNG. The fact that PCT-GN1-FNG has rarely been detected to date is probably due to its easier degradation compared with PCT-GN2-FNG.


Subject(s)
Arabidopsis , alpha-L-Fucosidase , Arabidopsis/genetics , Arabidopsis/metabolism , Epitopes , Fucose/chemistry , Polysaccharides/metabolism , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism
18.
Article in English | MEDLINE | ID: mdl-35703609

ABSTRACT

Blastocystis sp. is a common intestinal microorganism. The α-L-fucosidase (ALFuc) is an enzyme long associated with the colonization of the gut microbiota. However, this enzyme has not been experimentally identified in Blastocystis cultures. The objective of the present study was to identify ALFuc in supernatants of axenic cultures of Blastocystis subtype (ST)1 ATCC-50177 and ATCC-50610 and to compare predicted ALFuc proteins of alfuc genes in sequenced STs1-3 isolates in human Blastocystis carriers. Excretion/secretion (Es/p) and cell lysate proteins were obtained by processing Blastocystis ATCC cultures and submitting them to SDS-PAGE and immunoblotting. In addition, 18 fecal samples from symptomatic Blastocystis human carriers were analyzed by sequencing of amplification products for subtyping. A complete identification of the alfuc gene and phylogenetic analysis were performed. Immunoblotting showed that the amplified band corresponding to ALFuc (~51 kDa) was recognized only in the ES/p. Furthermore, prediction analysis of ALFuc 3D structures revealed that the domain α-L-fucosidase and the GH29 family's catalytic sites were conserved; interestingly, the galactose-binding domain was recognized only in ST1 and ST2. The phylogenetic inferences of ALFuc showed that STs1-3 were clearly identifiable and grouped into specific clusters. Our results show, for the first time through experimental data that ALFuc is a secretion product of Blastocystis sp., which could have a relevant role during intestinal colonization; however, further studies are required to clarify this condition. Furthermore, the alfuc gene is a promising candidate for a phylogenetic marker, as it shows a conserved classification with the SSU-rDNA gene.


Subject(s)
Blastocystis Infections , Blastocystis , Blastocystis/genetics , DNA, Protozoan/genetics , Feces , Genetic Variation , Humans , Phylogeny , alpha-L-Fucosidase/genetics
19.
Proc Natl Acad Sci U S A ; 119(26): e2111506119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737835

ABSTRACT

Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.


Subject(s)
Fucosidosis , Macroautophagy , Polysaccharides , Animals , Fucosidosis/genetics , Fucosidosis/metabolism , Lysosomes/metabolism , Macroautophagy/physiology , Mice , Polysaccharides/metabolism , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism
20.
Article in English | MEDLINE | ID: mdl-35608970

ABSTRACT

A novel bifidobacteria (designated S053-2T) was isolated from the gut of honeybee (Apis mellifera). Strain S053-2T was characterized using a polyphasic taxonomic approach. The result of 16S rRNA gene sequence analysis indicated that strain S053-2T was phylogenetically related to the type strains of Bifidobacterium asteroides, Bifidobacterium indicum, Bifidobacterium actinocoloniiforme, Bifidobacterium xylocopae, Bifidobacterium coryneforme, Bifidobacterium apousia, Bifidobacterium choladohabitans and Bifidobacterium polysaccharolyticum, and had 95.5-99.7 % 16S rRNA gene sequence similarities. Based on the 16S rRNA gene sequence analysis, strain S053-2T was most closely related to the type strain of B. asteroides, having 99.7 % 16S rRNA gene sequence similarity. Strain S053-2T had relatively low (91.6-95.7 %) pheS, atpA, clpC, dnaG, fusA, glnA, glyS, hsp60, argS, pyrG and recA sequence similarities to the type strain of B. asteroides. Strain S053-2T had 94.5-95.3% atpA, clpC, dnaG, dnaK and pyrG sequence similarities to the type strain of B. apousia. The phylogenomic tree indicated that strain S053-2T belonged to the B. asteroides group, and was most closely related to the type strains of B. asteroides, B. apousia, B. choladohabitans and B. polysaccharolyticum, and distantly related to type strains of other phylogenetically related species in the B. asteroides group. Strain S053-2T shared the highest average nucleotide identity (ANI, 93.8 %), digital DNA-DNA hybridization (dDDH, 52.4 %) and average amino acid identity (AAI, 95.6%) values with B. apousia W8102T. Strain S053-2T shared 91.1 % ANI, 41.9 % dDDH and 92.5 % AAI values with B. asteroides DSM 20089T. Acid production from l-arabinose, d-xylose, d-mannose, amygdalin, cellobiose, maltose, melibiose, sucrose, raffinose, gentiobiose and l-fucose, and activity of esterase lipase (C8) and α-fucosidase could differentiate strain S053-2T from B. asteroides DSM 20089T. Acid production from d-mannose, maltose, sucrose, melezitose and gentiobiose, and activity of α-fucosidase could differentiate strain S053-2T from B. apousia W8102T. Based upon the data obtained in the present study, a novel species, Bifidobacterium mizhiense sp. nov., is proposed, and the type strain is S053-2T (=JCM 34710T=CCTCC AB 2021129T).


Subject(s)
Mannose , alpha-L-Fucosidase , Animals , Bacterial Typing Techniques , Base Composition , Bees , Bifidobacterium , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Maltose , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sucrose , alpha-L-Fucosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...