Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Molecules ; 27(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35056822

ABSTRACT

Since the discovery of α-synuclein as the major component in Lewy bodies, research into this protein in the context of Parkinson's disease pathology has been exponential. Cannabinoids are being investigated as potential therapies for Parkinson's disease from numerous aspects, but still little is known about the links between the cannabinoid system and the pathogenic α-synuclein protein; understanding these links will be necessary if cannabinoid therapies are to reach the clinic in the future. Therefore, the aim of this study was to investigate the time-course of alterations in components of the endocannabinoid system after viral-mediated α-synuclein overexpression in the rat brain. Rats were given unilateral intranigral injections of AAV-GFP or AAV-α-synuclein and sacrificed 4, 8 and 12 weeks later for qRT-PCR and liquid chromatography-mass spectrometry analyses of the endocannabinoid system, in addition to histological visualization of α-synuclein expression along the nigrostriatal pathway. As anticipated, intranigral delivery of AAV-α-synuclein induced widespread overexpression of human α-synuclein in the nigrostriatal pathway, both at the mRNA level and the protein level. However, despite this profound α-synuclein overexpression, we detected no differences in CB1 or CB2 receptor expression in the nigrostriatal pathway; however, interestingly, there was a reduction in the expression of neuroinflammatory markers. Furthermore, there was a reduction in the levels of the endocannabinoid 2-AG and the related lipid immune mediator OEA at week 12 post-surgery, indicating that α-synuclein overexpression triggers dysregulation of the endocannabinoid system. Although this research does show that the endocannabinoid system is impacted by α-synuclein, further research is necessary to more comprehensively understand the link between the cannabinoid system and the α-synuclein aspect of Parkinson's disease pathology in order for cannabinoid-based therapies to be feasible for the treatment of this disease in the coming years.


Subject(s)
Corpus Striatum/pathology , Dependovirus/genetics , Endocannabinoids/metabolism , Substantia Nigra/pathology , alpha-Synuclein/metabolism , Animals , Corpus Striatum/metabolism , Female , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Substantia Nigra/metabolism , Time Factors , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics
2.
Sci Rep ; 12(1): 1163, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064139

ABSTRACT

Accumulation of phosphorylated α-synuclein aggregates has been implicated in several diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and is thought to spread in a prion-like manner. Elucidating the mechanisms of prion-like transmission of α-synuclein is important for the development of therapies for these diseases, but little is known about the details. Here, we injected α-synuclein fibrils into the brains of wild-type mice and examined the early phase of the induction of phosphorylated α-synuclein accumulation. We found that phosphorylated α-synuclein appeared within a few days after the intracerebral injection. It was observed initially in presynaptic regions and subsequently extended its localization to axons and cell bodies. These results suggest that extracellular α-synuclein fibrils are taken up into the presynaptic region and seed-dependently convert the endogenous normal α-synuclein that is abundant there to an abnormal phosphorylated form, which is then transported through the axon to the cell body.


Subject(s)
Hippocampus/pathology , Neurodegenerative Diseases/pathology , Synapses/pathology , alpha-Synuclein/metabolism , Animals , Axons/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Embryo, Mammalian , Humans , Male , Mice , Phosphorylation , Primary Cell Culture , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Synapses/metabolism , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics , alpha-Synuclein/isolation & purification
3.
Acta Neuropathol Commun ; 9(1): 189, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819144

ABSTRACT

Peripheral administration (oral, intranasal, intraperitoneal, intravenous) of assembled A53T α-synuclein induced synucleinopathy in heterozygous mice transgenic for human mutant A53T α-synuclein (line M83). The same was the case when cerebellar extracts from a case of multiple system atrophy with type II α-synuclein filaments were administered intraperitoneally, intravenously or intramuscularly. We observed abundant immunoreactivity for pS129 α-synuclein in nerve cells and severe motor impairment, resulting in hindlimb paralysis and shortened lifespan. Filaments immunoreactive for pS129 α-synuclein were in evidence. A 70% loss of motor neurons was present five months after an intraperitoneal injection of assembled A53T α-synuclein or cerebellar extract with type II α-synuclein filaments from an individual with a neuropathologically confirmed diagnosis of multiple system atrophy. Microglial cells changed from a predominantly ramified to a dystrophic appearance. Taken together, these findings establish a close relationship between the formation of α-synuclein inclusions in nerve cells and neurodegeneration, accompanied by a shift in microglial cell morphology. Propagation of α-synuclein inclusions depended on the characteristics of both seeds and transgenically expressed protein.


Subject(s)
Neurodegenerative Diseases/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , Aged , Animals , Animals, Genetically Modified , Hindlimb , Humans , Immunohistochemistry , Male , Mice, Neurologic Mutants , Microglia/pathology , Motor Neurons/pathology , Movement Disorders/pathology , Multiple System Atrophy/pathology , Mutation , Neurodegenerative Diseases/chemically induced , Neurons/metabolism , Paralysis/chemically induced , Paralysis/pathology , alpha-Synuclein/administration & dosage
4.
Neurobiol Aging ; 106: 12-25, 2021 10.
Article in English | MEDLINE | ID: mdl-34225000

ABSTRACT

Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.


Subject(s)
Microglia/pathology , Synucleinopathies/etiology , Synucleinopathies/pathology , alpha-Synuclein/adverse effects , Animals , Disease Models, Animal , Gene Expression , Mice, Transgenic , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/pathology , Synucleinopathies/genetics , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
J Neurochem ; 159(3): 554-573, 2021 11.
Article in English | MEDLINE | ID: mdl-34176164

ABSTRACT

Regional iron accumulation and α-synuclein (α-syn) spreading pathology within the central nervous system are common pathological findings in Parkinson's disease (PD). Whereas iron is known to bind to α-syn, facilitating its aggregation and regulating α-syn expression, it remains unclear if and how iron also modulates α-syn spreading. To elucidate the influence of iron on the propagation of α-syn pathology, we investigated α-syn spreading after stereotactic injection of α-syn preformed fibrils (PFFs) into the striatum of mouse brains after neonatal brain iron enrichment. C57Bl/6J mouse pups received oral gavage with 60, 120, or 240 mg/kg carbonyl iron or vehicle between postnatal days 10 and 17. At 12 weeks of age, intrastriatal injections of 5-µg PFFs were performed to induce seeding of α-syn aggregates. At 90 days post-injection, PFFs-injected mice displayed long-term memory deficits, without affection of motor behavior. Interestingly, quantification of α-syn phosphorylated at S129 showed reduced α-syn pathology and attenuated spreading to connectome-specific brain regions after brain iron enrichment. Furthermore, PFFs injection caused intrastriatal microglia accumulation, which was alleviated by iron in a dose-dependent way. In primary cortical neurons in a microfluidic chamber model in vitro, iron application did not alter trans-synaptic α-syn propagation, possibly indicating an involvement of non-neuronal cells in this process. Our study suggests that α-syn PFFs may induce cognitive deficits in mice independent of iron. However, a redistribution of α-syn aggregate pathology and reduction of striatal microglia accumulation in the mouse brain may be mediated via iron-induced alterations of the brain connectome.


Subject(s)
Brain Chemistry , Iron/pharmacology , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Animals, Newborn , Connectome , Corpus Striatum , Dose-Response Relationship, Drug , Female , Humans , Iron/administration & dosage , Male , Memory Disorders/chemically induced , Memory Disorders/psychology , Mice, Inbred C57BL , Microglia/pathology , Microinjections , Motor Activity/drug effects , alpha-Synuclein/administration & dosage
6.
Acta Neuropathol ; 141(6): 861-879, 2021 06.
Article in English | MEDLINE | ID: mdl-33895878

ABSTRACT

Cerebral deposition of abnormally aggregated α-synuclein (αSyn) is a neuropathological hallmark of Parkinson's disease (PD). PD-associated αSyn (αSynPD) aggregates can act as proteinaceous nuclei ("seeds") able of self-templated propagation. Since this is strikingly reminiscent to properties of proteinaceous infectious particles (prions), lessons learned from prion diseases suggest to test whether transferred αSynPD can propagate and induce neurological impairments or disease in a new host. Two studies that addressed this question provided divergent results. Intracerebral (i.c.) injection of Lewy body extracts from PD patients caused cerebral αSyn pathology, as well as nigrostriatal neurodegeneration, of wild-type mice and macaques, with the mice also showing motor impairments (Recasens et al. 2014, Ann Neurol 75:351-362). In contrast, i.c. transmission of homogenates from PD brains did not stimulate, after "> 360" days post-injection (dpi), pathological αSyn conversion or clinical symptoms in transgenic TgM83+/- mice hemizygously expressing mutated (A53T) human αSyn (Prusiner et al. 2015, PNAS 112:E5308-E5317). To advance the assessment of possible αSynPD hazards by providing further data, we examined neuropathological and clinical effects upon i.c. transmission of brain, stomach wall and muscle tissue as well as blood from PD patients in TgM83+/- mice up to 612 dpi. This revealed a subtle, yet distinctive stimulation of localized αSyn aggregation in the somatodendritic compartment and dystrophic neurites of individual or focally clustered cerebral neurons after challenge with brain and stomach wall homogenates. No such effect was observed with transmitted blood or homogenized muscle tissue. The detected stimulation of αSyn aggregation was not accompanied by apparent motor impairments or overt neurological disease in TgM83+/- mice. Our study substantiated that transmitted αSynPD seeds, including those from the stomach wall, are able to propagate in new mammalian hosts. The consequences of such propagation and potential safeguards need to be further investigated.


Subject(s)
Brain/pathology , Enteric Nervous System/pathology , Lewy Bodies/pathology , Neurons/pathology , Parkinson Disease , Stomach/pathology , alpha-Synuclein , Animals , Humans , Mice , Muscle, Skeletal/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Prions , alpha-Synuclein/administration & dosage , alpha-Synuclein/blood , alpha-Synuclein/isolation & purification , alpha-Synuclein/metabolism
7.
Exp Neurol ; 341: 113693, 2021 07.
Article in English | MEDLINE | ID: mdl-33727096

ABSTRACT

The repurposing of drugs developed to treat type 2 diabetes for the treatment of Parkinson's disease (PD) was encouraged by the beneficial effect exerted by the glucagon-like peptide 1 (GLP-1) analogue exenatide in a phase 2 clinical trial. The effects of GLP-1 analogues have been investigated extensively using rodent toxin models of PD. However, many of the toxin-based models used lack robust α-synuclein (α-syn) pathology, akin to the Lewy bodies and neurites seen in PD. One prior study has reported a protective effect of a GLP-1 analogue on midbrain dopamine neurons following injection of α-syn preformed fibrils (PFF) into the striatum. Here, we used olfactory bulb injections of PFF as a model of prodromal PD and monitored the effect of a long-acting GLP-1 analogue on the propagation of α-syn pathology in the olfactory system. Thirteen weeks after PFF injection, mice treated with long-acting the GLP-1 analogue had a significant increase in pathological α-syn in brain regions connected to the olfactory bulb, accompanied by signs of microglia activation. Our results suggest that the nature of the neuronal insult and intrinsic properties of the targeted neuronal population markedly influence the effect of GLP-1 analogues.


Subject(s)
Glucagon-Like Peptide 1/analogs & derivatives , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Prodromal Symptoms , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Animals , Disease Models, Animal , Female , Glucagon-Like Peptide 1/administration & dosage , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , alpha-Synuclein/administration & dosage
8.
Cell Death Dis ; 12(1): 81, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441545

ABSTRACT

Iron deposition is present in main lesion areas in the brains of patients with Parkinson's disease (PD) and an abnormal iron content may be associated with dopaminergic neuronal cytotoxicity and degeneration in the substantia nigra of the midbrain. However, the cause of iron deposition and its role in the pathological process of PD are unclear. In the present study, we investigated the effects of the nasal mucosal delivery of synthetic human α-synuclein (α-syn) preformed fibrils (PFFs) on the pathogenesis of PD in Macaca fascicularis. We detected that iron deposition was clearly increased in a time-dependent manner from 1 to 17 months in the substantia nigra and globus pallidus, highly contrasting to other brain regions after treatments with α-syn PFFs. At the cellular level, the iron deposits were specifically localized in microglia but not in dopaminergic neurons, nor in other types of glial cells in the substantia nigra, whereas the expression of transferrin (TF), TF receptor 1 (TFR1), TF receptor 2 (TFR2), and ferroportin (FPn) was increased in dopaminergic neurons. Furthermore, no clear dopaminergic neuron loss was observed in the substantia nigra, but with decreased immunoreactivity of tyrosine hydroxylase (TH) and appearance of axonal swelling in the putamen. The brain region-enriched and cell-type-dependent iron localizations indicate that the intranasal α-syn PFFs treatment-induced iron depositions in microglia in the substantia nigra may appear as an early cellular response that may initiate neuroinflammation in the dopaminergic system before cell death occurs. Our data suggest that the inhibition of iron deposition may be a potential approach for the early prevention and treatment of PD.


Subject(s)
Microglia/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/administration & dosage , Administration, Intranasal , Animals , Humans , Macaca fascicularis , Male , Microglia/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/therapy , Substantia Nigra/drug effects
9.
Neurobiol Dis ; 149: 105229, 2021 02.
Article in English | MEDLINE | ID: mdl-33352233

ABSTRACT

Alpha-synuclein (a-syn) can aggregate and form toxic oligomers and insoluble fibrils which are the main component of Lewy bodies. Intra-neuronal Lewy bodies are a major pathological characteristic of Parkinson's disease (PD). These fibrillar structures can act as seeds and accelerate the aggregation of monomeric a-syn. Indeed, recent studies show that injection of preformed a-syn fibrils (PFF) into the rodent brain can induce aggregation of the endogenous monomeric a-syn resulting in neuronal dysfunction and eventual cell death. We injected 8 µg of murine a-syn PFF, or soluble monomeric a-syn into the right striatum of rats. The animals were monitored behaviourally using the cylinder test, which measures paw asymmetry, and the corridor task that measures lateralized sensorimotor response to sugar treats. In vivo PET imaging was performed after 6, 13 and 22 weeks using [11C]DTBZ, a marker of the vesicular monoamine 2 transporter (VMAT2), and after 15 and 22 weeks using [11C]UCB-J, a marker of synaptic SV2A protein in nerve terminals. Histology was performed at the three time points using antibodies against dopaminergic markers, aggregated a-syn, and MHCII to evaluate the immune response. While the a-syn PFF injection caused only mild behavioural changes, [11C]DTBZ PET showed a significant and progressive decrease of VMAT2 binding in the ipsilateral striatum. This was accompanied by a small progressive decrease in [11C]UCB-J binding in the same area. In addition, our histological analysis revealed a gradual spread of misfolded a-syn pathology in areas anatomically connected to striatum that became bilateral with time. The striatal a-syn PFF injection resulted in a progressive unilateral degeneration of dopamine terminals, and an early and sustained presence of MHCII positive ramified microglia in the ipsilateral striatum and substantia nigra. Our study shows that striatal injections of a-syn fibrils induce progressive pathological synaptic dysfunction prior to cell death that can be detected in vivo with PET. We confirm that intrastriatal injection of a-syn PFFs provides a model of progressive a-syn pathology with loss of dopaminergic and synaptic function accompanied by neuroinflammation, as found in human PD.


Subject(s)
Corpus Striatum/metabolism , Disease Progression , Dopaminergic Neurons/metabolism , Positron-Emission Tomography/methods , Protein Aggregates/physiology , alpha-Synuclein/toxicity , Animals , Corpus Striatum/immunology , Corpus Striatum/pathology , Dopaminergic Neurons/immunology , Dopaminergic Neurons/pathology , Female , Injections, Intraventricular , Rats , Rats, Sprague-Dawley , alpha-Synuclein/administration & dosage , alpha-Synuclein/immunology
10.
J Parkinsons Dis ; 10(4): 1411-1427, 2020.
Article in English | MEDLINE | ID: mdl-32925105

ABSTRACT

BACKGROUND: Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE: We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS: To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS: We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION: Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.


Subject(s)
Olfactory Bulb/physiopathology , Piriform Cortex/physiopathology , Synucleinopathies/physiopathology , alpha-Synuclein/pharmacology , Animals , Beta Rhythm/physiology , Disease Models, Animal , Evoked Potentials/physiology , Mice , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Perception/physiology , Piriform Cortex/drug effects , Piriform Cortex/metabolism , Piriform Cortex/pathology , Synucleinopathies/chemically induced , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/administration & dosage
11.
J Neurosci ; 40(34): 6649-6659, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32669353

ABSTRACT

In vivo functional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group). Intramuscular injection of α-syn fibrils in the hindlimb of M83+/- mice leads to progressive α-syn pathology along the spinal cord, brainstem, and midbrain by 16 weeks post-injection. Our results suggest that peripheral injection of α-syn has acute systemic effects on the central nervous system such that structural and resting-state functional activity changes occur in the brain by four weeks post-injection, well before α-syn pathology reaches the brain. At 12 weeks post-injection, a separate and distinct pattern of structural and sensory-evoked functional brain activity changes was observed that are co-localized with previously reported regions of α-syn pathology and immune activation. Microstructural changes in the pons at 12 weeks post-injection were found to predict survival time and preceded measurable locomotor deficits. This study provides preliminary evidence for diffusion and fMRI markers linked to the progression of synuclein pathology and has translational importance for understanding synucleinopathies in humans.SIGNIFICANCE STATEMENT α-Synuclein (α-syn) pathology plays a critical role in neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The longitudinal effects of α-syn pathology on locomotion, brain microstructure, and functional brain activity are not well understood. Using high field imaging, we show preliminary evidence that peripheral injection of α-syn fibrils induces unique patterns of functional and structural changes that occur at different temporal stages of α-syn pathology progression. Our results challenge existing assumptions that α-syn pathology must precede changes in brain structure and function. Additionally, we show preliminary evidence that diffusion and functional magnetic resonance imaging (fMRI) are capable of resolving such changes and thus should be explored further as markers of disease progression.


Subject(s)
Brain/physiology , Brain/physiopathology , Evoked Potentials, Somatosensory , Locomotion/physiology , Synucleinopathies/pathology , Synucleinopathies/physiopathology , alpha-Synuclein/administration & dosage , Animals , Behavior, Animal , Brain/drug effects , Brain Mapping , Diffusion Magnetic Resonance Imaging , Female , Hot Temperature , Humans , Locomotion/drug effects , Male , Mice, Transgenic , Physical Stimulation
12.
Brain ; 143(5): 1462-1475, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32380543

ABSTRACT

In Parkinson's disease, synucleinopathy is hypothesized to spread from the enteric nervous system, via the vagus nerve, to the CNS. Here, we compare, in baboon monkeys, the pathological consequences of either intrastriatal or enteric injection of α-synuclein-containing Lewy body extracts from patients with Parkinson's disease. This study shows that patient-derived α-synuclein aggregates are able to induce nigrostriatal lesions and enteric nervous system pathology after either enteric or striatal injection in a non-human primate model. This finding suggests that the progression of α-synuclein pathology might be either caudo-rostral or rostro-caudal, varying between patients and disease subtypes. In addition, we report that α-synuclein pathological lesions were not found in the vagal nerve in our experimental setting. This study does not support the hypothesis of a transmission of α-synuclein pathology through the vagus nerve and the dorsal motor nucleus of the vagus. Instead, our results suggest a possible systemic mechanism in which the general circulation would act as a route for long-distance bidirectional transmission of endogenous α-synuclein between the enteric and the central nervous systems. Taken together, our study provides invaluable primate data exploring the role of the gut-brain axis in the initiation and propagation of Parkinson's disease pathology and should open the door to the development and testing of new therapeutic approaches aimed at interfering with the development of sporadic Parkinson's disease.


Subject(s)
Brain/pathology , Neuroimmunomodulation/physiology , Parkinson Disease/physiopathology , Vagus Nerve/pathology , alpha-Synuclein/toxicity , Aged , Animals , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Female , Humans , Lewy Bodies/metabolism , Lewy Bodies/pathology , Male , Papio , alpha-Synuclein/administration & dosage
13.
Neurobiol Dis ; 141: 104947, 2020 07.
Article in English | MEDLINE | ID: mdl-32422283

ABSTRACT

Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Previous work showed that developmental dieldrin exposure increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, possibly via changes in dopamine (DA) packaging and turnover. However, the relevance of the MPTP model to PD pathophysiology has been questioned. We therefore studied dieldrin-induced neurotoxicity in the α-synuclein (α-syn)-preformed fibril (PFF) model, which better reflects the α-syn pathology and toxicity observed in PD pathogenesis. Specifically, we used a "two-hit" model to determine whether developmental dieldrin exposure increases susceptibility to α-syn PFF-induced synucleinopathy. Dams were fed either dieldrin (0.3 mg/kg, every 3-4 days) or vehicle corn oil starting 1 month prior to breeding and continuing through weaning of pups at postnatal day 22. At 12 weeks of age, male and female offspring received intrastriatal α-syn PFF or control saline injections. Consistent with the male-specific increased susceptibility to MPTP, our results demonstrate that developmental dieldrin exposure exacerbates PFF-induced toxicity in male mice only. Specifically, in male offspring, dieldrin exacerbated PFF-induced motor deficits on the challenging beam and increased DA turnover in the striatum 6 months after PFF injection. However, male offspring showed neither exacerbation of phosphorylated α-syn aggregation (pSyn) in the substantia nigra (SN) at 1 or 2 months post-PFF injection, nor exacerbation of PFF-induced TH and NeuN loss in the SN 6 months post-PFF injection. Collectively, these data indicate that developmental dieldrin exposure produces a male-specific exacerbation of synucleinopathy-induced behavioral and biochemical deficits. This sex-specific result is consistent with both previous work in the MPTP model, our previously reported sex-specific effects of this exposure paradigm on the male and female epigenome, and the higher prevalence and more severe course of PD in males. The novel two-hit environmental toxicant/PFF exposure paradigm established in this project can be used to explore the mechanisms by which other PD-related exposures alter neuronal vulnerability to synucleinopathy in sporadic PD.


Subject(s)
Dieldrin/toxicity , Motor Activity/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Pesticides/toxicity , Protein Aggregation, Pathological , alpha-Synuclein/toxicity , Animals , Dopamine/metabolism , Female , Male , Mice, Inbred C57BL , Protein Aggregation, Pathological/chemically induced , Protein Aggregation, Pathological/metabolism , Sex Factors , Substantia Nigra/metabolism , Substantia Nigra/pathology , alpha-Synuclein/administration & dosage
14.
Neural Plast ; 2020: 6283754, 2020.
Article in English | MEDLINE | ID: mdl-32273890

ABSTRACT

The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKß-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.


Subject(s)
Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Synapses/pathology , alpha-Synuclein/metabolism , Adenoviridae/physiology , Animals , Genetic Vectors/physiology , Male , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , alpha-Synuclein/administration & dosage
15.
Int J Mol Sci ; 21(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210174

ABSTRACT

Oligomerization and/or aggregation of α-synuclein (α-Syn) triggers α-synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. It is known that α-Syn can spread in the brain like prions; however, the mechanism remains unclear. We demonstrated that fatty acid binding protein 3 (FABP3) promotes propagation of α-Syn in mouse brain. Animals were injected with mouse or human α-Syn pre-formed fibrils (PFF) into the bilateral substantia nigra pars compacta (SNpc). Two weeks after injection of mouse α-Syn PFF, wild-type (WT) mice exhibited motor and cognitive deficits, whereas FABP3 knock-out (Fabp3-/-) mice did not. The number of phosphorylated α-Syn (Ser-129)-positive cells was significantly decreased in Fabp3-/- mouse brain compared to that in WT mice. The SNpc was unilaterally infected with AAV-GFP/FABP3 in Fabp3-/- mice to confirm the involvement of FABP3 in the development of α-Syn PFF toxicity. The number of tyrosine hydroxylase (TH)- and phosphorylated α-Syn (Ser-129)-positive cells following α-Syn PFF injection significantly decreased in Fabp3-/- mice and markedly increased by AAV-GFP/FABP3 infection. Finally, we confirmed that the novel FABP3 inhibitor MF1 significantly antagonized motor and cognitive impairments by preventing α-Syn spreading following α-Syn PFF injection. Overall, FABP3 enhances α-Syn spreading in the brain following α-Syn PFF injection, and the FABP3 ligand MF1 represents an attractive therapeutic candidate for α-synucleinopathy.


Subject(s)
Brain/metabolism , Fatty Acid Binding Protein 3/metabolism , alpha-Synuclein/metabolism , Animals , Brain/pathology , Cognition , Disease Models, Animal , Fatty Acid Binding Protein 3/antagonists & inhibitors , Fatty Acid Binding Protein 3/genetics , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Mice, Knockout , Neurons/metabolism , Phosphorylation , Synucleinopathies/etiology , Synucleinopathies/metabolism , Synucleinopathies/pathology , Synucleinopathies/psychology , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/administration & dosage , alpha-Synuclein/adverse effects
16.
Nat Commun ; 11(1): 934, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071315

ABSTRACT

α-Synucleinopathies are characterized by autonomic dysfunction and motor impairments. In the pure autonomic failure (PAF), α-synuclein (α-Syn) pathology is confined within the autonomic nervous system with no motor features, but mouse models recapitulating PAF without motor dysfunction are lacking. Here, we show that in TgM83+/- mice, inoculation of α-Syn preformed fibrils (PFFs) into the stellate and celiac ganglia induces spreading of α-Syn pathology only through the autonomic pathway to both the central nervous system (CNS) and the autonomic innervation of peripheral organs bidirectionally. In parallel, the mice develop autonomic dysfunction, featured by orthostatic hypotension, constipation, hypohidrosis and hyposmia, without motor dysfunction. Thus, we have generated a mouse model of pure autonomic dysfunction caused by α-Syn pathology. This model may help define the mechanistic link between transmission of pathological α-Syn and the cardinal features of autonomic dysfunction in α-synucleinopathy.


Subject(s)
Ganglia, Autonomic/physiopathology , Pure Autonomic Failure/pathology , Synucleinopathies/pathology , alpha-Synuclein/metabolism , Animals , Behavior Observation Techniques , Disease Models, Animal , Ganglia, Autonomic/pathology , Humans , Male , Mice , Mice, Transgenic , Mutation , Protein Aggregates , Pure Autonomic Failure/genetics , Pure Autonomic Failure/physiopathology , Synucleinopathies/genetics , Synucleinopathies/physiopathology , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics
17.
FEBS Lett ; 594(8): 1271-1283, 2020 04.
Article in English | MEDLINE | ID: mdl-31912891

ABSTRACT

α-synuclein (αsyn) forms pathologic inclusions in several neurodegenerative diseases termed synucleinopathies. The inclusions are comprised of αsyn fibrils harboring prion-like properties. Prion-like activity of αsyn has been studied by intracerebral injection of fibrils into mice, where the presence of a species barrier requires the use of mouse αsyn. Post-translational modifications to αsyn such as carboxy (C)-terminal truncation occur in synucleinopathies, and their implications for prion-like aggregation and seeding are under investigation. Herein, C-truncated forms of αsyn found in human disease are recapitulated in mouse αsyn to study their seeding activity in vitro, in HEK293T cells, in neuronal-glial culture, and in nontransgenic mice. The results show that C-truncation of mouse αsyn accelerates aggregation of αsyn but alters prion-like seeding of inclusion formation.


Subject(s)
Neurons/metabolism , alpha-Synuclein/metabolism , Amyloid/metabolism , Animals , Cells, Cultured , HEK293 Cells , Hippocampus/metabolism , Hippocampus/pathology , Humans , Injections , Mice, Inbred Strains , Neuroglia/cytology , Neuroglia/metabolism , Neurons/pathology , Prions/metabolism , alpha-Synuclein/administration & dosage , alpha-Synuclein/genetics
18.
Neurosci Biobehav Rev ; 112: 1-27, 2020 05.
Article in English | MEDLINE | ID: mdl-31996301

ABSTRACT

Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aß) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aß and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aß, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aß and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.


Subject(s)
Amyloid beta-Peptides/pharmacology , Neurodegenerative Diseases/chemically induced , Prion Diseases/chemically induced , alpha-Synuclein/pharmacology , tau Proteins/pharmacology , Amyloid beta-Peptides/administration & dosage , Animals , Mice , alpha-Synuclein/administration & dosage , tau Proteins/administration & dosage
19.
Neuron ; 105(2): 260-275.e6, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31759806

ABSTRACT

Studies have shown an overlap of Aß plaques, tau tangles, and α-synuclein (α-syn) pathologies in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) with dementia (PDD) patients, with increased pathological burden correlating with severity of cognitive and motor symptoms. Despite the observed co-pathology and concomitance of motor and cognitive phenotypes, the consequences of the primary amyloidogenic protein on the secondary pathologies remain poorly understood. To better define the relationship between α-syn and Aß plaques, we injected α-syn preformed fibrils (α-syn mpffs) into mice with abundant Aß plaques. Aß deposits dramatically accelerated α-syn pathogenesis and spread throughout the brain. Remarkably, hyperphosphorylated tau (p-tau) was induced in α-syn mpff-injected 5xFAD mice. Finally, α-syn mpff-injected 5xFAD mice showed neuron loss that correlated with the progressive decline of cognitive and motor performance. Our findings suggest a "feed-forward" mechanism whereby Aß plaques enhance endogenous α-syn seeding and spreading over time post-injection with mpffs.


Subject(s)
Lewy Body Disease/metabolism , Neurons/pathology , Plaque, Amyloid/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Cell Count , Cognitive Dysfunction/pathology , Humans , Lewy Body Disease/pathology , Mice , Motor Activity , Phosphorylation , alpha-Synuclein/administration & dosage
20.
Neurogastroenterol Motil ; 32(1): e13726, 2020 01.
Article in English | MEDLINE | ID: mdl-31576631

ABSTRACT

BACKGROUND: A hallmark feature of Parkinson's disease (PD) is the build-up of α-synuclein protein aggregates throughout the brain; however α-synuclein is also expressed in enteric neurons. Gastrointestinal (GI) symptoms and pathology are frequently reported in PD, including constipation, increased intestinal permeability, glial pathology, and alterations to gut microbiota composition. α-synuclein can propagate through neuronal systems but the site of origin of α-synuclein pathology, whether it be the gut or the brain, is still unknown. Physical exercise is associated with alleviating symptoms of PD and with altering the composition of the gut microbiota. METHODS: This study investigated the effects of bilateral nigral injection of adeno-associated virus (AAV)-α-synuclein on enteric neurons, glia and neurochemistry, the gut microbiome, and bile acid metabolism in rats, some of whom were exposed to voluntary exercise. KEY RESULTS: Nigral overexpression of α-synuclein resulted in significant neuronal loss in the ileal submucosal plexus with no change in enteric glia. In contrast, the myenteric plexus showed a significant increase in glial expression, while neuronal numbers were maintained. Concomitant alterations were observed in the gut microbiome and related bile acid metabolism. Voluntary running protected against neuronal loss, increased enteric glial expression, and modified gut microbiome composition in the brain-injected AAV-α-synuclein PD model. CONCLUSIONS AND INFERENCES: These results show that developing nigral α-synuclein pathology in this PD model exerts significant alterations on the enteric nervous system (ENS) and gut microbiome that are receptive to modification by exercise. This highlights brain to gut communication as an important mechanism in PD pathology.


Subject(s)
Enteric Nervous System/pathology , Gastrointestinal Microbiome , Parkinsonian Disorders , Substantia Nigra/metabolism , alpha-Synuclein/toxicity , Animals , Genetic Vectors , Humans , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Transfection , alpha-Synuclein/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...