Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Nature ; 578(7794): 273-277, 2020 02.
Article in English | MEDLINE | ID: mdl-32025029

ABSTRACT

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of α-synuclein, including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy1. Clinically, it is challenging to differentiate Parkinson's disease and multiple system atrophy, especially at the early stages of disease2. Aggregates of α-synuclein in distinct synucleinopathies have been proposed to represent different conformational strains of α-synuclein that can self-propagate and spread from cell to cell3-6. Protein misfolding cyclic amplification (PMCA) is a technique that has previously been used to detect α-synuclein aggregates in samples of cerebrospinal fluid with high sensitivity and specificity7,8. Here we show that the α-synuclein-PMCA assay can discriminate between samples of cerebrospinal fluid from patients diagnosed with Parkinson's disease and samples from patients with multiple system atrophy, with an overall sensitivity of 95.4%. We used a combination of biochemical, biophysical and biological methods to analyse the product of α-synuclein-PMCA, and found that the characteristics of the α-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson's disease and multiple system atrophy. We also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain. These findings suggest that α-synuclein aggregates that are associated with Parkinson's disease and multiple system atrophy correspond to different conformational strains of α-synuclein, which can be amplified and detected by α-synuclein-PMCA. Our results may help to improve our understanding of the mechanism of α-synuclein misfolding and the structures of the aggregates that are implicated in different synucleinopathies, and may also enable the development of a biochemical assay to discriminate between Parkinson's disease and multiple system atrophy.


Subject(s)
Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/chemistry , Amyloid/chemistry , Brain Chemistry , Circular Dichroism , Endopeptidase K/metabolism , Humans , Multiple System Atrophy/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Protein Conformation , Protein Denaturation , Protein Folding , Spectroscopy, Fourier Transform Infrared , alpha-Synuclein/classification , alpha-Synuclein/toxicity
2.
Nature ; 557(7706): 558-563, 2018 05.
Article in English | MEDLINE | ID: mdl-29743672

ABSTRACT

In Lewy body diseases-including Parkinson's disease, without or with dementia, dementia with Lewy bodies, and Alzheimer's disease with Lewy body co-pathology 1 -α-synuclein (α-Syn) aggregates in neurons as Lewy bodies and Lewy neurites 2 . By contrast, in multiple system atrophy α-Syn accumulates mainly in oligodendrocytes as glial cytoplasmic inclusions (GCIs) 3 . Here we report that pathological α-Syn in GCIs and Lewy bodies (GCI-α-Syn and LB-α-Syn, respectively) is conformationally and biologically distinct. GCI-α-Syn forms structures that are more compact and it is about 1,000-fold more potent than LB-α-Syn in seeding α-Syn aggregation, consistent with the highly aggressive nature of multiple system atrophy. GCI-α-Syn and LB-α-Syn show no cell-type preference in seeding α-Syn pathology, which raises the question of why they demonstrate different cell-type distributions in Lewy body disease versus multiple system atrophy. We found that oligodendrocytes but not neurons transform misfolded α-Syn into a GCI-like strain, highlighting the fact that distinct α-Syn strains are generated by different intracellular milieus. Moreover, GCI-α-Syn maintains its high seeding activity when propagated in neurons. Thus, α-Syn strains are determined by both misfolded seeds and intracellular environments.


Subject(s)
Cytoplasm/metabolism , Lewy Bodies/metabolism , Lewy Bodies/pathology , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Neurons/metabolism , alpha-Synuclein/classification , alpha-Synuclein/metabolism , Animals , Cytoplasm/chemistry , Cytoplasm/pathology , Female , Humans , Lewy Bodies/chemistry , Male , Mice , Mice, Inbred C57BL , Neurons/chemistry , Neurons/pathology , Oligodendroglia/chemistry , Oligodendroglia/metabolism , Oligodendroglia/pathology , Organ Specificity , Protein Folding , alpha-Synuclein/chemistry
4.
Nature ; 522(7556): 340-4, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26061766

ABSTRACT

Misfolded protein aggregates represent a continuum with overlapping features in neurodegenerative diseases, but differences in protein components and affected brain regions. The molecular hallmark of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are megadalton α-synuclein-rich deposits suggestive of one molecular event causing distinct disease phenotypes. Glial α-synuclein (α-SYN) filamentous deposits are prominent in multiple system atrophy and neuronal α-SYN inclusions are found in Parkinson's disease and dementia with Lewy bodies. The discovery of α-SYN assemblies with different structural characteristics or 'strains' has led to the hypothesis that strains could account for the different clinico-pathological traits within synucleinopathies. In this study we show that α-SYN strain conformation and seeding propensity lead to distinct histopathological and behavioural phenotypes. We assess the properties of structurally well-defined α-SYN assemblies (oligomers, ribbons and fibrils) after injection in rat brain. We prove that α-SYN strains amplify in vivo. Fibrils seem to be the major toxic strain, resulting in progressive motor impairment and cell death, whereas ribbons cause a distinct histopathological phenotype displaying Parkinson's disease and multiple system atrophy traits. Additionally, we show that α-SYN assemblies cross the blood-brain barrier and distribute to the central nervous system after intravenous injection. Our results demonstrate that distinct α-SYN strains display differential seeding capacities, inducing strain-specific pathology and neurotoxic phenotypes.


Subject(s)
Lewy Body Disease/chemically induced , Multiple System Atrophy/chemically induced , Parkinson Disease/pathology , alpha-Synuclein/administration & dosage , alpha-Synuclein/toxicity , Animals , Blood-Brain Barrier , Brain/drug effects , Brain/metabolism , Female , Humans , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Phenotype , Rats , Rats, Wistar , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Synapses/metabolism , Synapses/pathology , alpha-Synuclein/chemistry , alpha-Synuclein/classification
5.
BMC Neurosci ; 15: 69, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24898419

ABSTRACT

BACKGROUND: α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. RESULTS: Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. CONCLUSIONS: Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.


Subject(s)
Macromolecular Substances/metabolism , Neurons/metabolism , Prions/classification , Prions/metabolism , alpha-Synuclein/classification , alpha-Synuclein/metabolism , Animals , Cell Line , Humans , Mice
6.
Biochem Biophys Res Commun ; 441(2): 308-17, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24140056

ABSTRACT

Over the last decade, many genetic studies have suggested that the synucleins, which are small, natively unfolded proteins, are closely related to Parkinson's disease and cancer. Less is known about the molecular basis of this role. A comprehensive analysis of the evolutionary path of the synuclein protein family may reveal the relationship between evolutionarily conserved residues and protein function or structure. The phylogeny of 252 unique synuclein sequences from 73 organisms suggests that gamma-synuclein is the common ancestor of alpha- and beta-synuclein. Although all three sub-families remain highly conserved, especially at the N-terminal, nearly 15% of the residues in each sub family clearly diverged during evolution, providing crucial guidance for investigations of the different properties of the members of the superfamily. His50 is found to be an alpha-specific conserved residue (91%) and, based on mutagenesis, evolutionarily developed a secondary copper binding site in the alpha synuclein family. Surprisingly, this site is located between two well-known polymorphisms of alpha-synuclein, E46K and A53T, which are linked to early-onset Parkinson's disease, suggesting that the mutation-induced impairment of copper binding could be a mechanism responsible for alpha-synuclein aggregation.


Subject(s)
Evolution, Molecular , Phylogeny , alpha-Synuclein/classification , beta-Synuclein/classification , gamma-Synuclein/classification , Amino Acid Sequence , Binding Sites , Conserved Sequence , Copper/chemistry , Humans , Molecular Sequence Data , Sequence Alignment , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , beta-Synuclein/chemistry , beta-Synuclein/genetics , gamma-Synuclein/chemistry , gamma-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...