Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.317
Filter
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703217

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Subject(s)
Mitochondria , Oxidative Stress , Rats, Sprague-Dawley , TRPC Cation Channels , alpha-Synuclein , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Rats , Oxidative Stress/drug effects , Humans , TRPC Cation Channels/genetics , TRPC Cation Channels/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Male , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy
2.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691171

ABSTRACT

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Mitochondria , Neuroglia , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Neuroglia/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals, Genetically Modified , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Dopamine/metabolism , Metabolomics , RNA Interference
3.
Biochem Pharmacol ; 224: 116261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705534

ABSTRACT

Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.


Subject(s)
Angiotensin I , Hippocampus , Mice, Transgenic , Peptide Fragments , Receptors, G-Protein-Coupled , alpha-Synuclein , Animals , Humans , Male , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Angiotensin I/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Mutation , Peptide Fragments/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Complications/metabolism , Postoperative Complications/genetics , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
4.
Nat Commun ; 15(1): 4150, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755164

ABSTRACT

Age-related neurodegenerative diseases involving amyloid aggregation remain one of the biggest challenges of modern medicine. Alterations in the gastrointestinal microbiome play an active role in the aetiology of neurological disorders. Here, we dissect the amyloidogenic properties of biofilm-associated proteins (BAPs) of the gut microbiota and their implications for synucleinopathies. We demonstrate that BAPs are naturally assembled as amyloid-like fibrils in insoluble fractions isolated from the human gut microbiota. We show that BAP genes are part of the accessory genomes, revealing microbiome variability. Remarkably, the abundance of certain BAP genes in the gut microbiome is correlated with Parkinson's disease (PD) incidence. Using cultured dopaminergic neurons and Caenorhabditis elegans models, we report that BAP-derived amyloids induce α-synuclein aggregation. Our results show that the chaperone-mediated autophagy is compromised by BAP amyloids. Indeed, inoculation of BAP fibrils into the brains of wild-type mice promote key pathological features of PD. Therefore, our findings establish the use of BAP amyloids as potential targets and biomarkers of α-synucleinopathies.


Subject(s)
Amyloid , Biofilms , Caenorhabditis elegans , Dopaminergic Neurons , Gastrointestinal Microbiome , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Humans , Biofilms/growth & development , Amyloid/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Parkinson Disease/metabolism , Parkinson Disease/microbiology , Parkinson Disease/pathology , Mice , Dopaminergic Neurons/metabolism , Autophagy , Neurodegenerative Diseases/metabolism , Mice, Inbred C57BL , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Brain/metabolism , Brain/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
5.
Acta Neuropathol Commun ; 12(1): 75, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745295

ABSTRACT

In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.


Subject(s)
Mice, Inbred C57BL , Nerve Net , Oligonucleotides, Antisense , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/administration & dosage , Mice , Nerve Net/metabolism , Nerve Net/drug effects , Nerve Net/pathology , Male , Corpus Striatum/metabolism , Corpus Striatum/pathology , Corpus Striatum/drug effects , Disease Models, Animal , Brain/metabolism , Brain/pathology , Brain/drug effects , RNA, Messenger/metabolism
6.
Commun Biol ; 7(1): 570, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750146

ABSTRACT

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Mice , Male , Female , Endophenotypes , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Prodromal Symptoms , Disease Models, Animal , Mice, Transgenic , Humans , Sex Factors , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Sex Characteristics
7.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780644

ABSTRACT

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Subject(s)
Calgranulin A , Calgranulin B , Mice, Transgenic , Parkinson Disease , Ubiquitin Thiolesterase , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Animals , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Humans , Mice , Female , Male , Calgranulin B/metabolism , Calgranulin B/genetics , Calgranulin A/metabolism , Calgranulin A/genetics , Disease Models, Animal , Mice, Inbred C57BL
8.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713200

ABSTRACT

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Subject(s)
Hippocampus , Neurons , Synapsins , alpha-Synuclein , Animals , Humans , Mice , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/chemistry , Cells, Cultured , Hippocampus/metabolism , Neurons/metabolism , Protein Binding , Protein Domains , Synapses/metabolism , Synapsins/metabolism , Synapsins/genetics , Synaptic Vesicles/metabolism
9.
Neurosci Lett ; 833: 137826, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38768940

ABSTRACT

Synucleins are pivotal in neurodegenerative conditions. Beta-synuclein (ß-synuclein) is part of the synuclein protein family alongside alpha-synuclein (α-synuclein) and gamma-synuclein (γ-synuclein). These proteins, found mainly in brain tissue and cancers, are soluble and unstructured. ß-synuclein shares significant similarity with α-synuclein, especially in their N-terminus, with a 90% match. However, their aggregation tendencies differ significantly. While α-synuclein aggregation is believed to be counteracted by ß-synuclein, which occurs in conditions like Parkinson's disease, ß-synuclein may counteract α-synuclein's toxic effects on the nervous system, offering potential treatment for neurodegenerative diseases. Under normal circumstances, ß-synuclein may guard against disease by interacting with α-synuclein. Yet, in pathological environments with heightened levels or toxic substances, it might contribute to disease. Our research aims to explore potential harmful mutations in the ß-synuclein using computational tools to predict their destabilizing impact on protein structure. Consensus analysis revealed rs1207608813 (A63P), rs1340051870 (S72F), and rs1581178262 (G36C) as deleterious. These findings highlight the intricate relationship between nsSNPs and protein function, shedding light on their potential implications in disease pathways. Understanding the structural consequences of nsSNPs is crucial for elucidating their role in pathogenesis and developing targeted therapeutic interventions. Our results offer a robust computational framework for identifying neurodegenerative disorder-related mutations from SNP datasets, potentially reducing the costs associated with experimental characterization.


Subject(s)
Polymorphism, Single Nucleotide , beta-Synuclein , beta-Synuclein/genetics , beta-Synuclein/metabolism , beta-Synuclein/chemistry , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Genetic Predisposition to Disease , Mutation , Protein Conformation
10.
Eur J Pharmacol ; 975: 176641, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754537

ABSTRACT

Parkinson's Disease (PD) is a progressive neurodegenerative disorder expected to increase by over 50% by 2030 due to increasing life expectancy. The disease's hallmarks include slow movement, tremors, and postural instability. Impaired protein processing is a major factor in the pathophysiology of PD, leading to the buildup of aberrant protein aggregates, particularly misfolded α-synuclein, also known as Lewy bodies. These Lewy bodies lead to inflammation and further death of dopaminergic neurons, leading to imbalances in excitatory and inhibitory neurotransmitters, causing excessive uncontrollable movements called dyskinesias. It was previously suggested that a complex interplay involving hereditary and environmental variables causes the specific death of neurons in PD; however, the exact mechanism of the association involving the two primary modifiers is yet unknown. An increasing amount of research points to the involvement of epigenetics in the onset and course of several neurological conditions, such as PD. DNA methylation, post-modifications of histones, and non-coding RNAs are the primary examples of epigenetic alterations, that is defined as alterations to the expression of genes and functioning without modifications in DNA sequence. Epigenetic modifications play a significant role in the development of PD, with genes such as Parkin, PTEN-induced kinase 1 (PINK1), DJ1, Leucine-Rich Repeat Kinase 2 (LRRK2), and alpha-synuclein associated with the disease. The aberrant epigenetic changes implicated in the pathophysiology of PD and their impact on the design of novel therapeutic approaches are the primary focus of this review.


Subject(s)
Epigenesis, Genetic , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Animals , DNA Methylation , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
11.
Nat Commun ; 15(1): 4663, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821932

ABSTRACT

Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid ß precursor-like protein 1 (Aplp1) interacts with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo. The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology deepens our insight about molecular mechanisms of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson's disease and related α-synucleinopathies.


Subject(s)
Lymphocyte Activation Gene 3 Protein , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Humans , Animals , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Binding , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Mice, Knockout , Male , Mice, Inbred C57BL , Female
12.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Article in English | IBECS | ID: ibc-232514

ABSTRACT

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Subject(s)
Humans , Synucleins , Liposomes , alpha-Synuclein/genetics , Microglia , Disease Models, Animal
13.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622654

ABSTRACT

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Mice , Animals , alpha-Synuclein/genetics , Lewy Bodies/pathology , Neuroinflammatory Diseases , Parkinson Disease/pathology , Mice, Transgenic , Immunotherapy/methods , Cytokines , Immunoglobulin G
14.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38567991

ABSTRACT

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/toxicity , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Amyloid/chemistry , Protein Conformation, beta-Strand
15.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Article in English | MEDLINE | ID: mdl-38599826

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Subject(s)
Berberine , Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Berberine/analogs & derivatives , Case-Control Studies , Coptis chinensis , Dopaminergic Neurons/metabolism , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rhizome
16.
Neuromolecular Med ; 26(1): 9, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568291

ABSTRACT

Aggregation of α-synuclein (α-syn) and α-syn cytotoxicity are hallmarks of sporadic and familial Parkinson's disease (PD). Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent enhancement of the expression of the 20S proteasome core particles (20S CPs) and regulatory particles (RPs) increases proteasome activity, which can promote α-syn clearance in PD. Activation of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) may reduce oxidative stress by strongly inducing Nrf2 gene expression. In the present study, tetramethylpyrazine nitrone (TBN), a potent-free radical scavenger, promoted α-syn clearance by the ubiquitin-proteasome system (UPS) in cell models overexpressing the human A53T mutant α-syn. In the α-syn transgenic mice model, TBN improved motor impairment, decreased the products of oxidative damage, and down-regulated the α-syn level in the serum. TBN consistently up-regulated PGC-1α and Nrf2 expression in tested models of PD. Additionally, TBN similarly enhanced the proteasome 20S subunit beta 8 (Psmb8) expression, which is linked to chymotrypsin-like proteasome activity. Furthermore, TBN increased the mRNA levels of both the 11S RPs subunits Pa28αß and a proteasome chaperone, known as the proteasome maturation protein (Pomp). Interestingly, specific siRNA targeting of Nrf2 blocked TBN's effects on Psmb8, Pa28αß, Pomp expression, and α-syn clearance. In conclusion, TBN promotes the clearance of α-syn via Nrf2-mediated UPS activation, and it may serve as a potentially disease-modifying therapeutic agent for PD.


Subject(s)
NF-E2-Related Factor 2 , Proteasome Endopeptidase Complex , Pyrazines , Humans , Animals , Mice , NF-E2-Related Factor 2/genetics , alpha-Synuclein/genetics , Mice, Transgenic , Ubiquitins
17.
Nat Commun ; 15(1): 3658, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688913

ABSTRACT

Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.


Subject(s)
Caenorhabditis elegans , Dopaminergic Neurons , Parkinson Disease , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans/metabolism , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Animals , Humans , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Phenotype , Protein Aggregates/drug effects , Disease Models, Animal , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Pyridines/pharmacology , Pyridines/chemistry , Amides/pharmacology , Amides/chemistry
18.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575601

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Synucleinopathies , Animals , Humans , Mice , Rats , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Dopaminergic Neurons/metabolism , Mesencephalon/metabolism , Neurodegenerative Diseases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
19.
Neurologia (Engl Ed) ; 39(4): 321-328, 2024 May.
Article in English | MEDLINE | ID: mdl-38616059

ABSTRACT

INTRODUCTION: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. METHODS: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn. RESULTS: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. CONCLUSIONS: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.


Subject(s)
Microglia , alpha-Synuclein , Humans , Animals , Mice , alpha-Synuclein/genetics , Interleukin-6 , Disease Models, Animal , Mice, Transgenic
20.
Sci Rep ; 14(1): 9710, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678103

ABSTRACT

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Subject(s)
Dependovirus , Fibroins , Genetic Vectors , Luminescent Measurements , Mice, Inbred C57BL , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Dependovirus/genetics , Humans , Mice , Luminescent Measurements/methods , Genetic Vectors/genetics , Fibroins/metabolism , Central Nervous System/metabolism , Male , Luciferases/metabolism , Luciferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...