Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.536
Filter
2.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
3.
Cell Mol Biol Lett ; 29(1): 66, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724931

ABSTRACT

The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and ß-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular ß-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/metabolism , Humans , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Gene Editing/methods , beta Catenin/metabolism , beta Catenin/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
4.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722330

ABSTRACT

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Subject(s)
Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
5.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38742598

ABSTRACT

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Subject(s)
Chickens , Cholesterol Side-Chain Cleavage Enzyme , Granulosa Cells , Progesterone , beta Catenin , Animals , Female , Progesterone/biosynthesis , Progesterone/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Granulosa Cells/metabolism , Chickens/genetics , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Gene Expression Regulation/physiology
6.
Genes Chromosomes Cancer ; 63(5): e23247, 2024 May.
Article in English | MEDLINE | ID: mdl-38757718

ABSTRACT

Superficial fibromas are a group of mesenchymal spindle cell lesions with pathomorphological heterogeneity and diverse molecular backgrounds. In part, they may be indicators of an underlying syndrome. Among the best-known entities of superficial fibromas is Gardner fibroma, a plaque-like benign tumor, which is associated with APC germline mutations and occurs in patients with familial adenomatosis polyposis (Gardner syndrome). Affected patients also have an increased risk to develop desmoid fibromatosis (DTF), a locally aggressive neoplasm of the deep soft tissue highly prone to local recurrences. Although a minority of DTFs occur in the syndromic context and harbor APC germline mutations, most frequently their underlying molecular aberration is a sporadic mutation in Exon 3 of the CTNNB1 gene. Up to date, a non-syndromic equivalent to Gardner fibroma carrying a CTNNB1 mutation has not been defined. Here, we present two cases of (sub-)cutaneous tumors with a hypocellular and collagen-rich Gardner fibroma-like appearance and pathogenic, somatic CTNNB1 mutations. We aim to differentiate these tumors from other fibromas according to their histological appearance, immunohistochemical staining profile and underlying somatic CTNNB1 mutations. Furthermore, we distinguish them from locally aggressive desmoid fibromatosis regarding their biological behavior, prognosis and indicated therapeutic strategies. Consequently, we call them CTNNB1-mutated superficial fibromas as a sporadic counterpart lesion to syndromic Gardner fibromas.


Subject(s)
Fibroma , beta Catenin , Humans , beta Catenin/genetics , Fibroma/genetics , Fibroma/pathology , Male , Female , Mutation , Middle Aged , Fibromatosis, Aggressive/genetics , Fibromatosis, Aggressive/pathology , Adult , Gardner Syndrome/genetics , Gardner Syndrome/pathology , Germ-Line Mutation
7.
Elife ; 132024 May 14.
Article in English | MEDLINE | ID: mdl-38743056

ABSTRACT

Mutations in the gene for ß-catenin cause liver cancer cells to release fewer exosomes, which reduces the number of immune cells infiltrating the tumor.


Subject(s)
Tumor Escape , Humans , beta Catenin/metabolism , beta Catenin/genetics , Exosomes/immunology , Exosomes/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Mutation , Immune System/immunology , Neoplasms/immunology , Neoplasms/genetics
8.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Article in English | MEDLINE | ID: mdl-38780511

ABSTRACT

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Subject(s)
Adrenal Glands , Hypertension , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Male , Hypertension/metabolism , Hypertension/genetics , Adrenal Glands/metabolism , Adrenal Glands/pathology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Rats , Rats, Inbred SHR , Rats, Wistar , Immunohistochemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/genetics , Hypertension, Renovascular/pathology
9.
BMC Cancer ; 24(1): 564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711026

ABSTRACT

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Subject(s)
Drug Resistance, Neoplasm , Fluorouracil , Mouth Neoplasms , Wnt Signaling Pathway , Wnt3 Protein , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Drug Resistance, Neoplasm/genetics , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Wnt3 Protein/metabolism , Wnt3 Protein/genetics , beta Catenin/metabolism , beta Catenin/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , Antimetabolites, Antineoplastic/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
10.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791218

ABSTRACT

KCTD1 plays crucial roles in regulating both the SHH and WNT/ß-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on ß-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.


Subject(s)
Tooth Abnormalities , Humans , Tooth Abnormalities/genetics , Female , Male , Wnt Signaling Pathway/genetics , Pedigree , Child , Exome Sequencing , Adolescent , Genetic Variation , beta Catenin/genetics , beta Catenin/metabolism , Adult , Co-Repressor Proteins
11.
Sci Rep ; 14(1): 10642, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724565

ABSTRACT

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Subject(s)
Cell Proliferation , Cetuximab , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Wnt Signaling Pathway , beta Catenin , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cetuximab/pharmacology , Wnt Signaling Pathway/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Movement/drug effects , Prognosis , Antineoplastic Agents, Immunological/pharmacology
12.
Cancer Med ; 13(9): e7221, 2024 May.
Article in English | MEDLINE | ID: mdl-38733179

ABSTRACT

BACKGROUND: Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS: The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, ß-catenin and downstream molecules of the WNT/ß-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS: This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/ß-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of ß-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the ß-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by ß-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION: In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/ß-catenin/PDK1 signaling axis.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Long Noncoding , Uterine Cervical Neoplasms , Wnt Signaling Pathway , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Glycolysis , Cell Movement
13.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698330

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Subject(s)
Endometrial Neoplasms , Glycogen Synthase Kinase 3 beta , Myosin Heavy Chains , beta Catenin , Humans , Female , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Mice , Cell Proliferation/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Middle Aged , Naphthoquinones/pharmacology
14.
Anticancer Res ; 44(6): 2471-2485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821625

ABSTRACT

BACKGROUND/AIM: The cytoplasmic retention and stabilization of CTNNB1 (ß-catenin) in response to Wnt is well documented in playing a role in tumor growth. Here, through the utilization of a multiplex siRNA library screening strategy, we investigated the modulation of CTNNB1 function in tumor cell progression by ribonucleoside-diphosphate reductase subunit M2 (RRM2). MATERIALS AND METHODS: We conducted a multiplex siRNA screening assay to identify targets involved in CTNNB1 nuclear translocation. In order to examine the effect of inhibition of RRM2, selected from the siRNA screening results, we performed RRM2 knockdown and assayed for colon cancer cell viability, sphere formation assay, and invasion assay. The interaction of RRM2 with CTNNB1 and its impact on oncogenesis was examined using immunoprecipitation, immunoblotting, immunocytochemistry, and RT-qPCR. RESULTS: After a series of screening and filtration steps, we identified 26 genes that were potentially involved in CTNNB1 nuclear translocation. All candidate genes were validated in various cell lines. The results revealed that siRNA-mediated knockdown of RRM2 reduces the nuclear translocation of CTNNB1. This reduction was accompanied by a decrease in cell count, resulting in a suppressive effect on tumor cell growth. CONCLUSION: High throughput siRNA screening is an attractive strategy for identifying gene functions in cancers and the interaction between RRM2 and CTNNB1 is an attractive drug target for regulating RRM2-CTNNB1-related pathways in cancers.


Subject(s)
Colonic Neoplasms , Disease Progression , Ribonucleoside Diphosphate Reductase , beta Catenin , Humans , beta Catenin/metabolism , beta Catenin/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , RNA, Small Interfering/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques
15.
Mol Biol Rep ; 51(1): 634, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727746

ABSTRACT

BACKGROUND: The Chinese soft-shelled turtle, Pelodiscus sinensis, exhibits distinct sexual dimorphism, with the males growing faster and larger than the females. During breeding, all-male offspring can be obtained using 17ß-estradiol (E2). However, the molecular mechanisms underlying E2-induced sexual reversal have not yet been elucidated. Previous studies have investigated the molecular sequence and expression characteristics of estrogen receptors (ERs). METHODS AND RESULTS: In this study, primary liver cells and embryos of P. sinensis were treated with ER agonists or inhibitors. Cell incubation experiments revealed that nuclear ERs (nERs) were the main pathway for the transmission of estrogen signals. Our results showed that ERα agonist (ERα-ag) upregulated the expression of Rspo1, whereas ERα inhibitor (ERα-Inh) downregulated its expression. The expression of Dmrt1 was enhanced after ERα-Inh + G-ag treatment, indicating that the regulation of male genes may not act through a single estrogen receptor, but a combination of ERs. In embryos, only the ERα-ag remarkably promoted the expression levels of Rspo1, Wnt4, and ß-catenin, whereas the ERα-Inh had a suppressive effect. Additionally, Dmrt1, Amh, and Sox9 expression levels were downregulated after ERß inhibitor (ERß-Inh) treatment. GPER agonist (G-ag) has a significant promotion effect on Rspo1, Wnt4, and ß-catenin, while the inhibitor G-Inh does not affect male-related genes. CONCLUSIONS: Overall, these results suggest that ERs play different roles during sexual reversal in P. sinensis and ERα may be the main carrier of estrogen-induced sexual reversal in P. sinensis. Further studies need to be performed to analyze the mechanism of ER action.


Subject(s)
Receptors, Estrogen , Turtles , Animals , Turtles/genetics , Turtles/metabolism , Male , Female , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology , Estradiol/metabolism , Sex Characteristics , Estrogens/metabolism , Estrogens/pharmacology , beta Catenin/metabolism , beta Catenin/genetics , Liver/metabolism , Signal Transduction/genetics , Signal Transduction/drug effects
16.
BMC Cancer ; 24(1): 618, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773433

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is highly malignant with a dismal prognosis, although the available therapies are insufficient. No efficient ubiquitinase has been identified as a therapeutic target for HCC despite the complicating role that of proteins ubiquitination plays in the malignant development of HCC. METHODS: The expression of ubiquitin carboxyl terminal hydrolase L5 (UCHL5) in HCC tumor tissue and adjacent normal tissue was determined using the cancer genome atlas (TCGA) database and was validated using real-time quantitative polymerase chain reaction (RT-qRCR), Western blot and immunohistochemistry (IHC), and the relation of UCHL5 with patient clinical prognosis was explored. The expression of UCHL5 was knocked down and validated, and the effect of UCHL5 on the biological course of HCC was explored using cellular assays. To clarify the molecular mechanism of action of UCHL5 affecting HCC, expression studies of Adenosine triphosphate adenosine triphosphate (ATP), extracellular acidification (ECAR), and glycolysis-related enzymes were performed. The effects of UCHL5 on ß-catenin ubiquitination and Wnt signaling pathways were explored in depth and validated using cellular functionalities. Validation was also performed in vivo. RESULTS: In the course of this investigation, we discovered that UCHL5 was strongly expressed in HCC at both cellular and tissue levels. The prognosis of patients with high UCHL5 expression is considerably worse than that of those with low UCHL5 expression. UCHL5 has been shown to increase the degree of glycolysis in HCC cells with the impact of stimulating the proliferation and metastasis of HCC cells in both in vivo and in vitro. UCHL5 downregulates its degree of ubiquitination by binding to ß-catenin, which activates the Wnt/ß-catenin pathway and accelerates HCC cell glycolysis. Thereby promoting the growth of the HCC. CONCLUSIONS: In summary, we have demonstrated for the first time that UCHL5 is a target of HCC and promotes the progression of hepatocellular carcinoma by promoting glycolysis through the activation of the Wnt/ß-catenin pathway. UCHL5 may thus serve as a novel prognostic marker and therapeutic target for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , Glycolysis , Liver Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Mice , Animals , Prognosis , Cell Proliferation , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Male , Female , Gene Expression Regulation, Neoplastic , Ubiquitination , Middle Aged
17.
Mol Biol Rep ; 51(1): 691, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796671

ABSTRACT

BACKGROUND: Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS: We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of ß-catenin by western blot were determined. RESULTS: A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and ß-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION: It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the ß-catenin signalling pathway.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Growth Differentiation Factor 15 , N-Acetylgalactosaminyltransferases , Neoplastic Stem Cells , beta Catenin , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Drug Resistance, Neoplasm/genetics , beta Catenin/metabolism , beta Catenin/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , MCF-7 Cells , Middle Aged , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Adult , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction , Wnt Signaling Pathway/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line, Tumor , Aged
18.
Commun Biol ; 7(1): 545, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714724

ABSTRACT

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Subject(s)
Down-Regulation , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Circular , SOX9 Transcription Factor , Stomach Neoplasms , Transcription Factor 4 , beta Catenin , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Humans , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , beta Catenin/metabolism , beta Catenin/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Transcription Factor 4/genetics , Transcription Factor 4/metabolism , Animals , Mice , Cell Line, Tumor , Mice, Nude , Male , Female , Drug Resistance, Neoplasm/genetics , Mice, Inbred BALB C , Middle Aged
19.
Cancer Lett ; 592: 216922, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38704137

ABSTRACT

Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of ß-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/ß-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.


Subject(s)
Adenocarcinoma of Lung , Carcinogenesis , Cell Differentiation , Cyclin A2 , Lung Neoplasms , Smoking , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Smoking/adverse effects , Cyclin A2/genetics , Cyclin A2/metabolism , Carcinogenesis/genetics , Wnt Signaling Pathway/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Cell Line, Tumor , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Male , Female
20.
Bone Res ; 12(1): 33, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811544

ABSTRACT

Wnt/ß-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/ß-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/ß-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired ß-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of ß-catenin phosphorylation, but necessary for LRP6/ß-catenin and N-cadherin/ß-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active ß-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating ß-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/ß-catenin signaling and trabecular bone formation.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-6 , Mice, Knockout , Osteoblasts , Osteogenesis , Vacuolar Proton-Translocating ATPases , Wnt Signaling Pathway , beta Catenin , Animals , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , beta Catenin/genetics , Osteoblasts/metabolism , Osteogenesis/physiology , Mice , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Protein Transport , Cell Differentiation , Osteocytes/metabolism , Prorenin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...