Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
1.
J Food Sci ; 89(6): 3347-3368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745379

ABSTRACT

The present work investigated the structure-function relationship of dry fractionated oat flour (DFOF) as a techno-functional ingredient using bread as a model system. Mechanically, DFOF fractions (F), that is, F1: <224 µm, F2: 250-280 µm, F3: 280-500 µm, F4: 500-600 µm, and whole oat flour (F5) were blended with white wheat flour at 10%, 30%, and 50% substitution levels for bread making. The blended flours, doughs, and bread samples were assessed for their techno-functional, nutritional, and structural characteristics. The results of Mixolab and the Rapid Visco Analyzer show that the 50% substituted F3 fraction exhibits the highest water absorption properties (69.53%), whereas the 50% F1 fraction exhibits the highest peak viscosity of the past slurry. Analysis of bread samples revealed a lower particle size of DFOF fractions and higher supplementation levels, increased ß-glucan levels (0.13-1.29 g/100 bread (db), reduced fermentable monosaccharides, that is, glucose (1.44-0.33 g/100 g), and fructose (1.06-0.28 g/100 g). The effect of particle size surpassed the substitution level effect on bread volume reduction. The lowest hardness value for F1 is 10%, and the highest value for F2 is 50%. The total number of cells in the bread slice decreased from the control to the F4 fraction (50%). Multi-criteria analysis indicated that DFOF fractions produced breads with similar structure and higher nutritional value developed from white wheat flour. PRACTICAL APPLICATION: The use of mechanically fractionated oat flours fractions in white wheat flour breads can improve the nutritional profile without affecting the physical properties of the bread product. Based on the oat flour fractions, bakers and food processing companies can tailor the bread formulations for high ß-glucan, high fiber, and low reduced sugar claims.


Subject(s)
Avena , Bread , Flour , Food Handling , Nutritive Value , Triticum , Bread/analysis , Avena/chemistry , Flour/analysis , Triticum/chemistry , Food Handling/methods , Particle Size , Viscosity , Structure-Activity Relationship , beta-Glucans/analysis , beta-Glucans/chemistry
2.
Appl Spectrosc ; 78(4): 355-364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378014

ABSTRACT

The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, ß-1,3- and ß-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of ß-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 µm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the ß-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.


Subject(s)
Saccharomyces cerevisiae Proteins , beta-Glucans , beta-Glucans/analysis , Cell Wall/chemistry , Chitin/analysis , Chitin/metabolism , Glucans/analysis , Glucans/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Spectroscopy, Fourier Transform Infrared
3.
Mycotoxin Res ; 40(1): 111-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37957461

ABSTRACT

The present study aims to evaluate and compare antimycotoxin additives (AMAs) composed of bentonite (AMA 1), clinoptilolite (AMA 2), and beta-glucans extracted from yeast cell wall (AMA 3), with respect to their ability to bind Aflatoxin B1 (AFB1) using the isothermal models of Freundlich, Langmuir, and BET. The additives were submitted to an in vitro adsorption experiment with AFB1 (0.05-4 mg L-1), using solutions of pH 3 and pH 6, with an inclusion rate of 0.5%, and analyzed by HPLC-MS/MS. At pH 3, for the seven concentrations evaluated, AMA 1 obtained adsorption rates (99.69 to 99.98%) higher (p < 0. 05) than the other AMAs, which were from 82.97 to 88.72% (AMA 2) and from 79.43 to 89.32% (AMA 3). At pH 6, in concentrations of 1, 2, and 4 mg L-1 of AFB1, AMA 1 obtained higher (p < 0.05) adsorption results (97.86 to 99.86%) than AMA 2 (91.98 to 96.12%) and AMA 3 (87.56 to 93.50%). The Freundlich model best fitted the AMA 1 adsorption data. For the other additives, the Langmuir model obtained the best fit, demonstrating qm of 8.6 mg g-1 at pH 3 and 2.3 mg g-1 at pH 6 for AMA 2; and for AMA 3, with qm of 3.4 mg g-1 at pH 3 and 2.3 mg g-1 at pH 6. The isotherm models work as an effective tool to describe the adsorption process whereas the AMA adsorption capacity varies as a function of product composition, pH, and mycotoxin content.


Subject(s)
Saccharomyces cerevisiae , Zeolites , beta-Glucans , Aflatoxin B1/analysis , Bentonite , Adsorption , beta-Glucans/analysis , Tandem Mass Spectrometry , Cell Wall/chemistry , Cell Wall/metabolism
4.
Crit Care ; 27(1): 470, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037130

ABSTRACT

BACKGROUND: Intra-abdominal candidiasis (IAC) is difficult to predict in critically ill patients with intra-abdominal infection, leading to the overuse of antifungal treatments. Serum and peritoneal 1.3-beta-D-glucan (sBDG and pBDG) have been proposed to confirm or invalidate the diagnosis of IAC, but clinical studies have reported inconsistent results, notably because of heterogeneous populations with a low IAC prevalence. This study aimed to identify a high-risk IAC population and evaluate pBDG and sBDG in diagnosing IAC. METHODS: This prospective multicenter noninterventional French study included consecutive critically ill patients undergoing abdominal surgery for abdominal sepsis. The primary objective was to establish the IAC prevalence. The secondary objective was to explore whether sBDG and pBDG could be used to diagnose IAC. Wako® beta-glucan test (WT, Fujifilm Wako Chemicals Europe, Neuss, Germany) was used for pBDG measurements. WT and Fungitell® beta-D-glucan assay (FA, Associate of Cape Cod, East Falmouth, USA) were used for sBDG measurements. RESULTS: Between 1 January 2020 and 31 December 2022, 199 patients were included. Patients were predominantly male (63%), with a median age of 66 [54-72] years. The IAC prevalence was 44% (87/199). The main IAC type was secondary peritonitis. Septic shock occurred in 63% of cases. After multivariate analysis, a nosocomial origin was associated with more IAC cases (P = 0.0399). The median pBDG level was significantly elevated in IAC (448 [107.5-1578.0] pg/ml) compared to non-IAC patients (133 [16.0-831.0] pg/ml), P = 0.0021. For a pBDG threshold of 45 pg/ml, the negative predictive value in assessing IAC was 82.3%. The median sBDG level with WT (n = 42) at day 1 was higher in IAC (5 [3.0-9.0] pg/ml) than in non-IAC patients (3 [3.0-3.0] pg/ml), P = 0.012. Similarly, median sBDG level with FA (n = 140) at day 1 was higher in IAC (104 [38.0-211.0] pg/ml) than in non-IAC patients (50 [23.0-141.0] pg/ml), P = 0.009. Combining a peritonitis score < 3, sBDG < 3.3 pg/ml (WT) and pBDG < 45 pg/ml (WT) yielded a negative predictive value of 100%. CONCLUSION: In critically ill patients with intra-abdominal infection requiring surgery, the IAC prevalence was 44%. Combining low sBDG and pBDG with a low peritonitis score effectively excluded IAC and could limit unnecessary antifungal agent exposure. TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov (ID number 03997929, first registered on June 24, 2019).


Subject(s)
Candidiasis , Intraabdominal Infections , Peritonitis , beta-Glucans , Humans , Male , Middle Aged , Aged , Female , Prospective Studies , Glucans , Critical Illness/therapy , Candidiasis/drug therapy , Antifungal Agents/therapeutic use , Intraabdominal Infections/diagnosis , Peritonitis/diagnosis , beta-Glucans/analysis , Sensitivity and Specificity
5.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836774

ABSTRACT

It has long been known that containers for sample analysis or storage can play a role in endotoxin recovery and have to be taken into account when determining endotoxin concentrations. However, there is little data on the effects of containers regarding (1→3)-ß-D-glucan, which plays a role as a contaminant in endotoxin measurements. To determine the effect of the container on (1→3)-ß-D-glucan measurements, four different types of containers were investigated at different temperatures and stored for up to 28 days. For short-term storage for 3 h at room temperature, no effect of the container on the (1→3)-ß-D-glucan recovery could be observed, but for storage at -20 °C, the results indicate that the storage time and temperature influences (1→3)-ß-D-glucan detection. All containers showed a trend of lower recoveries over time, but the polyethylene container showed a significantly lower recovery compared to the other containers. We also showed that freeze/thaw cycles had a strong influence on the recovery of (1→3)-ß-D-glucan in polyethylene containers. Our study showed that the container can affect not only the detection of endotoxins but also the detection of (1→3)-ß-D-glucans.


Subject(s)
Glucans , beta-Glucans , Glucans/analysis , beta-Glucans/analysis , Endotoxins , Temperature , Polyethylenes
6.
Molecules ; 28(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37299027

ABSTRACT

BACKGROUND: This article is devoted to the study of the effect of electrochemically activated water (catholyte with pH 9.3) on organic compounds of the plant matrix of brewer's spent grain in order to extract various compounds from it. METHODS: Brewer's spent grain was obtained from barley malt at a pilot plant by mashing the malt followed by filtration and washing of the grain in water and storing it at (0 ± 2) °C in craft bags. For the organic compound quantitative determination, instrumental methods of analysis (HPLC) were used, and the results were subjected to mathematical analysis. RESULTS: The study results showed that at atmospheric pressure, the alkaline properties of the catholyte showed better results compared to aqueous extraction with respect to ß-glucan, sugars, nitrogenous and phenolic compounds, and 120 min was the best period for extraction at 50 °C. The excess pressure conditions used (0.5 ÷ 1 atm) revealed an increase in the accumulation of non-starch polysaccharide and nitrogenous compounds, while the level of sugars, furan and phenolic compounds decreased with increasing treatment duration. The waste grain extract ultrasonic treatment used revealed the effectiveness of catholyte in relation to the extraction of ß-glucan and nitrogenous fractions; however, sugars and phenolic compounds did not significantly accumulate. The correlation method made it possible to reveal the regularities in the formation of furan compounds under the conditions of extraction with the catholyte: Syringic acid had the greatest effect on the formation of 5-OH-methylfurfural at atmospheric pressure and 50 °C and vanillic acid under conditions of excess pressure. Regarding furfural and 5-methylfurfural, amino acids had a direct effect at excess pressure. It was shown that the content of all furan compounds depends on amino acids with thiol groups and gallic acid; the formation of 5-hydroxymethylfurfural and 5-methylfurfural is influenced by gallic and vanillic acids; the release of furfural and 5-methylfurfural is determined by amino acids and gallic acid; excess pressure conditions promote the formation of furan compounds under the action of gallic and lilac acids. CONCLUSIONS: This study showed that a catholyte allows for efficient extraction of carbohydrate, nitrogenous and monophenolic compounds under pressure conditions, while flavonoids require a reduction in extraction time under pressure conditions.


Subject(s)
Furaldehyde , beta-Glucans , Furaldehyde/analysis , Organic Chemicals/analysis , Amino Acids/analysis , Phenols/analysis , Sugars/analysis , Water/analysis , beta-Glucans/analysis , Edible Grain/chemistry
7.
Nat Rev Microbiol ; 21(4): 248-259, 2023 04.
Article in English | MEDLINE | ID: mdl-36266346

ABSTRACT

The fungal cell wall is essential for growth and survival, and is a key target for antifungal drugs and the immune system. The cell wall must be robust but flexible, protective and shielding yet porous to nutrients and membrane vesicles and receptive to exogenous signals. Most fungi have a common inner wall skeleton of chitin and ß-glucans that functions as a flexible viscoelastic frame to which a more diverse set of outer cell wall polymers and glycosylated proteins are attached. Whereas the inner wall largely determines shape and strength, the outer wall confers properties of hydrophobicity, adhesiveness, and chemical and immunological heterogeneity. The spatial organization and dynamic regulation of the wall in response to prevailing growth conditions enable fungi to thrive within changing, diverse and often hostile environments. Understanding this architecture provides opportunities to develop diagnostics and drugs to combat life-threatening fungal infections.


Subject(s)
Glucans , beta-Glucans , Glucans/analysis , Glucans/chemistry , Glucans/metabolism , Cell Wall/metabolism , Antifungal Agents , beta-Glucans/analysis , beta-Glucans/metabolism , Chitin/analysis , Chitin/chemistry , Chitin/metabolism , Fungal Proteins/analysis , Fungal Proteins/chemistry , Fungal Proteins/metabolism
8.
Front Cell Infect Microbiol ; 12: 976924, 2022.
Article in English | MEDLINE | ID: mdl-36211971

ABSTRACT

The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, ß-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.


Subject(s)
Sporothrix , beta-Glucans , Animals , Antifungal Agents , Benzenesulfonates , Cell Wall/metabolism , Cellulose , Chitin , Congo Red , Glutamine , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Hexosamines/analysis , Hexosamines/metabolism , Humans , Mammals/metabolism , Polymers/analysis , Sporothrix/metabolism , Sugars , Uridine Diphosphate , beta-Glucans/analysis
9.
Nutrients ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235569

ABSTRACT

Dietary fiber exerts beneficial effects on human health reducing the risk factors of metabolic related diseases such as hyperglycemia, insulin resistance, and hypercholesterolemia. The aim of this study is to demonstrate the efficacy of a food supplement based on brewer's spent grain (BSG) extract in the reduction of postprandial glycemia and insulinemia in normoglycemic subjects. BSG was chemically characterized, revealing the presence of resistant starch (14.64 g/100 g), arabinoxylans (7.50 g/100 g), ß-glucans (1.92 g/100 g) and other soluble fibers (6.43 g/100 g), and bioaccessible ferulic acid (91.3 mg/100 g). For the clinical study, 40 normoglycemic subjects were randomized into two groups, 1 and 2 (n = 20), for a cross-over clinical design and received either BSG extract-based food supplement or placebo. Postprandial blood glucose values were significantly lower than corresponding values in the placebo group after 90 and 120 min, while at the baseline and in the first 60 min, the two glycemic curves overlapped substantially. This improved clinical outcome was corroborated by significant reductions in postprandial insulinemia. None of the subjects reported adverse effects. This study showed that the tested BSG extract-based food supplement improves glucose metabolism and insulinemic response in normoglycemic subjects with at most a mild insulin resistance.


Subject(s)
Glucose Intolerance , Insulin Resistance , beta-Glucans , Blood Glucose/metabolism , Cross-Over Studies , Dietary Fiber , Dietary Supplements , Edible Grain/chemistry , Humans , Insulin , Postprandial Period , Resistant Starch , beta-Glucans/analysis
10.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209183

ABSTRACT

According to international health and food organizations and authorities, people should limit fat intake since fat is the most caloric component of food and it is often a source of unsafe saturated fatty acids (FA) and trans isomers. The greatest health benefits come from replacing shorts with dietary fiber molecules. The aim of the study was to determine the possibility of reducing shortening content, which has an undesirable profile of FA, by addition of ß-glucan molecules in shortbread biscuits. The effect of oat and yeast ß-glucan supplementation on physical and sensory quality of products with reduced fat content (max 15%) were studied. It was shown that the substitution of shortening by ß-glucan in shortbread biscuits is possible to a limited extent. Reduction in product energy value (up to 36 kcal/100 g) and content of undesirable FA (maximum 2.1 g/100 g) and increased of ß-glucan content, regardless of the type, caused deterioration of biscuits quality and affected changes during storage. The substitution of shortening by ß-glucan in food is a good way to improve nutritional value by increasing the amount of dietary fiber molecules, reducing calories, and amount of SFA in diets.


Subject(s)
Avena/chemistry , Bread/analysis , Food Ingredients/analysis , Food Quality , Yeasts/chemistry , beta-Glucans/chemistry , Humans , Nutritive Value , beta-Glucans/analysis
11.
Intern Med J ; 52(3): 426-435, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32896984

ABSTRACT

BACKGROUND: Early, accurate diagnosis of invasive fungal disease (IFD) improves clinical outcomes. 1,3-beta-d-glucan (BDG) (Fungitell, Associates of Cape Cod, Inc., Falmouth, MA, USA) detection can improve IFD diagnosis but has been unavailable in Australia. AIMS: To assess performance of serum BDG for IFD diagnosis in a high-risk Australian haematology population. METHODS: We compared the diagnostic value of weekly screening of serum BDG with screening by Aspergillus polymerase chain reaction and Aspergillus galactomannan in 57 at-risk episodes for the diagnosis of IFD (proven, probable, possible IFD). RESULTS: IFD episodes were: proven (n = 4); probable (n = 4); possible (n = 18); and no IFD (n = 31). Using two consecutive BDG results of ≥80 pg/mL to call a result 'positive', the sensitivity, specificity, positive predictive value and negative predictive value was 37.5%, 64.5%, 23.1% and 80.7% respectively. For invasive aspergillosis, test performance increased to 50%, 90.3%, 57.1% and 87.5% respectively if any two of serum BDG/Aspergillus polymerase chain reaction/galactomannan yielded a 'positive' result. In proven/probable IFD, five of eight episodes returned a positive BDG result earlier (mean 6.6 days) than other diagnostic tests. False-negative BDG results occurred in three of eight episodes of proven/probable IFD, and false positive in 10 of 31 patients with no IFD. Erratic patterns of BDG values predicted false positive results (P = 0.03). Using serum BDG results, possible IFD were reassigned to either 'no' or 'probable' IFD in 44% cases. Empiric anti-fungal therapy use may have been optimised by BDG monitoring in 38.5% of courses. CONCLUSIONS: The BDG assay can add diagnostic speed and value but was hampered by low sensitivity and positive predictive value in Australian haematology patients.


Subject(s)
Hematology , Mycoses , beta-Glucans , Australia/epidemiology , Humans , Sensitivity and Specificity , beta-Glucans/analysis
12.
Environ Sci Pollut Res Int ; 29(20): 29562-29569, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34302241

ABSTRACT

Brewers' spent grain (BSG) represents the 85% of the total residue produced during the beer brewing process, with a global annual production volume exceeding 30 Mtons. The current study concerns the application of solid state fermentation (SSF) as a bioprocess where the nutritional value of BSG is improved for further use as animal feed with increased value. The investigated SSF procedure was initiated by the edible fungi Pleurotus ostreatus, which constitutes a natural source of proteins, ß-glucans, and various metabolites (vitamins, nutrients, etc.). Herein, the SSF of BSG resulted in a significant increase of protein content by 49.49%, a 10-fold increase of 1,3-1,6 ß-glucans, and a respective reduction of cellulose by 11.42%. The application of this method is expected to provide some useful information on the utilization of BSG as substrate for fungi-initiated SSF, a bioprocess allowing the significant reduction of the environmental impact caused by the beer brewing industry and simultaneously producing animal feed with higher protein content and improved nutritional characteristics. Such studies contribute to confront the unavailability of proteinaceous animal feed observed in the last decade.


Subject(s)
Edible Grain , beta-Glucans , Animal Feed , Animals , Beer , Edible Grain/chemistry , Fermentation , Fungi , beta-Glucans/analysis
13.
Cell Mol Biol (Noisy-le-grand) ; 68(9): 150-159, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36905259

ABSTRACT

Cervical cancer is one of the leading causes of death among women. Due to incomplete knowledge and hidden symptoms, it is not easily diagnosable. After the diagnosis of cervical cancer at an advanced stage, treatment such as chemotherapy and radiation therapy become too much costly along with having many side effects such as hair loss, loss of appetite, nausea, tiredness, etc. ß-Glucan does a novel polysaccharide has many immunomodulatory properties. In our research, we have tested the efficacy of Agaricus bisporus derived ß-Glucan particles (ADGPs) as an antimicrobial, antioxidant and anticancer agent against the cervical cancer HeLa cells. Prepared particles were quantified for carbohydrate content by anthrone test and further HPTLC analysis to confirm the polysaccharide nature and 1,3 glycosidic linkages of ß-Glucan. ADGPs were found to have efficient antimicrobial activity against various fungal and bacterial tested strains. DPPH assay confirmed the antioxidant activity of ADGPs. Cell viability was assessed against the cervical cancer cell line by using the MTT and IC50 was found at 54µg/ml. Furthermore, ß-Glucan was found to induce a significant amount of ROS, leading to the apoptosis of cells. The same was also assessed with the help of Propidium Iodide (PI) staining. With the help of JC-1 staining, ß-Glucan was found to disrupt the Mitochondrial Membrane Potential (MMP), ultimately resulting in the cancer cell HeLa death. Based on our experimental findings, we found that ADGPs can be proven as an efficient therapy for cervical cancer treatment and work as an antimicrobial and antioxidant agent.


Subject(s)
Anti-Infective Agents , Uterine Cervical Neoplasms , beta-Glucans , Humans , Female , Glucans , beta-Glucans/analysis , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Antioxidants/pharmacology , HeLa Cells , Polysaccharides/pharmacology , Anti-Infective Agents/pharmacology , Apoptosis
14.
Molecules ; 26(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770775

ABSTRACT

ß-glucan is a dietary fiber that is beneficial to human health, and its content varies according to its different parts, type of cereal grain, and growing environment. In this study, the ß-glucan of milled rice, rice husk, and rice bran fractions, as well as the amylose content of milled rice fraction, from 38 selected rice-paddy grains from six regions of Thailand were quantitatively determined. The milled rice of the Sakon Nakhon (SN) cultivar grown in the northeast contained the highest ß-glucan content (0.88 ± 0.03%), followed by the milled rice of the Jow Khao Chiangmai (JKC) cultivar (0.71 ± 0.03%) and rice bran of the Sew Mae Jan (SMJ) cultivar (0.67 ± 0.03%) grown in the north. The results reveal that the rice cultivars from each region showing variation in the ß-glucan level in each fraction, which is mainly found in milled rice and rice bran, are similar to those found in other cereal grains, although low amounts are found in the husk. The amylose and ß-glucan contents in the milled rice fraction showed a strong negative correlation (r = -0.805; p < 0.0001). This new information about the ß-glucan content of Thai rice cultivars could be used for the development of cereal-based functional food.


Subject(s)
Amylose/chemistry , Oryza/chemistry , beta-Glucans/chemistry , Amylose/analysis , Chemical Fractionation , Edible Grain/chemistry , Food Analysis , Geography , Organ Specificity , Thailand , beta-Glucans/analysis
15.
Nutrients ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34579130

ABSTRACT

Water-insoluble ß-glucan has been reported to have beneficial effects on human health. However, no studies have thoroughly characterized the structure and function of water-insoluble ß-glucan in oat bran. Thus, the structure and effect of water-insoluble ß-glucan on weight gain and lipid metabolism in high-fat diet (HFD)-fed mice were analyzed. First, water-insoluble ß-glucan was isolated and purified from oat bran. Compared with water-soluble ß-glucan, water-insoluble ß-glucan had higher DP3:DP4 molar ratio (2.12 and 1.67, respectively) and molecular weight (123,800 and 119,200 g/mol, respectively). Notably, water-insoluble ß-glucan exhibited more fibrous sheet-like structure and greater swelling power than water-soluble ß-glucan. Animal experiments have shown that oral administration of water-insoluble ß-glucan tended to lower the final body weight of obese mice after 10 weeks treatment. In addition, water-insoluble ß-glucan administration significantly improved the serum lipid profile (triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels) and epididymal adipocytes size. What is more, water-insoluble ß-glucan reduced the accumulation and accelerated the decomposition of lipid in liver. In conclusion, water-insoluble ß-glucan (oat bran) could alleviate obesity in HFD-fed mice by improving blood lipid level and accelerating the decomposition of lipid.


Subject(s)
Avena/chemistry , Dietary Fiber/pharmacology , Lipid Metabolism/drug effects , beta-Glucans/pharmacology , Adipocytes/metabolism , Animals , Cholesterol/blood , Cholesterol, HDL/blood , Diet, High-Fat/methods , Dietary Fiber/analysis , Edible Grain/chemistry , Humans , Lipids/blood , Liver/metabolism , Mice , Mice, Obese , Obesity/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Triglycerides/blood , Water/chemistry , beta-Glucans/analysis
16.
PLoS One ; 16(9): e0258069, 2021.
Article in English | MEDLINE | ID: mdl-34591937

ABSTRACT

ß-glucans has been reported to be associated with many health-promoting and improvements in animal performance, however, information about their effects on the bacterial community remains unknown. This study aimed to investigate how the addition of ß-glucans can affect the fecal bacterial community with possible consequences on animal growth and health. For this, newborn Holstein calves (n = 14) were individually housed in tropical shelters and blocked according to sex, date, and weight at birth and randomly assigned to one of the following treatments: (1) Control: milk replacer (14% solids, 24% CP, 18.5% fat); (2) ß-glucans: milk replacer supplemented with ß-glucans (2 g/d). All calves were bucket fed 6 L/d of milk replacer and received water and starter concentrate ad libitum starting on d 2. To evaluate the bacteriome, fecal samples were collected at weeks 1, 2, 4, and 8. The bacterial community was assessed through sequencing of the V3-V4 region of the 16S rRNA gene on the Illumina MiSeq platform and analyzed using the DADA2 pipeline. No differences for Shannon and Chao1 indexes were observed for treatments, but both indexes increased with age (P < 0.001). There were dissimilarities in the structure of the bacterial community during the pre-weaning period (P = 0.01). In a deeper taxonomic level, Collinsella (Actinobacteriota), Prevotella (Bacteroidota), and Lactobacillus (Firmicutes) were the most abundant genera (9.84, 9.54, and 8.82% of the sequences, respectively). ß-glucans promoted a higher abundance of Alloprevotella and Holdemanella, which may indicate a beneficial effect of supplementation on dairy calves. The bacterial community was highly correlated with the fecal score at weeks 1 and 2 and with starter concentrate intake at week 8. In conclusion, algae ß-glucan supplementation could be beneficial to fecal bacteriome and consequently to the health and performance of dairy calves.


Subject(s)
Animal Feed/analysis , Feces/microbiology , beta-Glucans/analysis , Animals , Cattle , Diet/veterinary , Microbiota
17.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502174

ABSTRACT

Invasive fungal infections (IFIs) are serious infections that develop in conjunction with neutropenia after chemotherapy for acute leukemia or with hematopoietic stem cell transplantation. Conventionally, empirical antifungal therapy was recommended to treat IFIs for patient safety despite a lack of evidence of fungal infections. However, many studies have indicated that antifungals were not necessary for over half of patients, and several detriments of empirical therapy were noted, e.g., antifungals caused adverse reactions, an increase in drug-resistant fungi was a possibility, and medical costs soared. ß-D-glucan (BDG) is a component of clinically important fungi such as Aspergillus and Candida. The G-test was developed in Japan as a way to measure BDG in serum using a coagulation factor from the blood of the horseshoe crab. Pre-emptive antifungal therapy based upon serodiagnosis with a BDG or galactomannan assay and CT imaging has been introduced. With pre-emptive antifungal therapy, the prognosis is equivalent to that with empirical therapy, and the dose of the antifungal has been successfully reduced. Measurement of BDG has been adopted widely as a method of diagnosing IFIs and is listed in the key guidelines for fungal infections and febrile neutropenia.


Subject(s)
Antifungal Agents/therapeutic use , Invasive Fungal Infections/drug therapy , beta-Glucans/analysis , Aspergillus/metabolism , Biomarkers/analysis , Candida/metabolism , Humans , Invasive Fungal Infections/diagnosis
18.
Food Funct ; 12(20): 10040-10052, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34515712

ABSTRACT

Recent studies have reported that highland barley as a whole grain diet has anti-hyperglycemic effects, however little information is available about the active compounds that ameliorate pancreatic ß-cell dysfunction and the related mechanisms. In this study, chlorogenic acid (CA) and ß-glucan (BG) were identified as the active compounds that ameliorated ß-cell dysfunction. CA ameliorated ß-cell dysfunction by inhibiting cell apoptosis and improving glucose-stimulated insulin secretion via targeting G protein-coupled receptor 40 (GPR40) and regulating the phospholipase C ß (PLCß) pathway. BG ameliorated ß-cell dysfunction by improving cell proliferation via targeting mammalian target of rapamycin (mTOR) and regulating the protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß) pathway. Furthermore, CA and BG improved ß-cell sensitivity and pancreatic insulin secretion, and inhibited ß-cell apoptosis in impaired glucose tolerance (IGT) mice. Notably, CA restored homeostasis model assessment (HOMA)-ß values and Ca2+-ATP and K+-ATP levels back to normal levels, and BG at 300 mg per kg BW restored ß-cell insulin contents back to normal levels in IGT mice. Additionally, the combination of CA and BG had an additive effect on ameliorating ß-cell dysfunction. These results help develop whole highland barley grain as a functional food for preventing type 2 diabetes by ameliorating pancreatic ß-cell damage.


Subject(s)
Apoptosis/drug effects , Chlorogenic Acid/pharmacology , Diabetes Mellitus, Type 2/prevention & control , Hordeum/chemistry , Insulin-Secreting Cells/drug effects , beta-Glucans/pharmacology , Animals , Cell Proliferation/drug effects , Chlorogenic Acid/analysis , Diabetes Mellitus, Type 2/metabolism , Glucose Intolerance/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/pathology , Male , Mice , Phospholipase C beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , TOR Serine-Threonine Kinases/metabolism , Whole Grains/chemistry , beta-Glucans/analysis
19.
Carbohydr Polym ; 271: 118416, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364557

ABSTRACT

This present work evaluated the effect of heat fluidization, microwave roasting and baking treatment of highland barley (HB) on the molecular, structural, thermal and antioxidant characteristics of ß-glucan. Fluorescence microscopy results showed that heat fluidization exhibited the greatest disruption effect on endosperm cell walls, resulting in the highest extractability (3.35 ± 0.06 g/100 g flour) and purity (92.67 ± 0.73%) of ß-glucan. After HB thermal processing, the molecular weight and polydispersity index of ß-glucan were respectively reduced by 3.68%-90.35% and 26.45%-39.83%, and its microscopic molecular morphology transformed from large sphere aggregate to alveolate gel network structure. Meanwhile, the structural elucidation by X-ray diffraction and infrared spectroscopy revealed that thermal processing induced the scission of polymeric chain and formation of lattice-type microgels without changing the primary functional groups of ß-glucan. Furthermore, thermogravimetry and antioxidant results indicated the thermal stability and antioxidant activity of ß-glucan were enhanced by thermal processing.


Subject(s)
Free Radical Scavengers/chemistry , Hordeum/chemistry , beta-Glucans/chemistry , Cell Wall/chemistry , Endosperm/chemistry , Flour , Free Radical Scavengers/analysis , Free Radical Scavengers/isolation & purification , Heating , Molecular Weight , Solid Phase Extraction/methods , beta-Glucans/analysis , beta-Glucans/isolation & purification
20.
PLoS One ; 16(8): e0255172, 2021.
Article in English | MEDLINE | ID: mdl-34437556

ABSTRACT

BACKGROUND: Each of the currently available (1→3)-ß-D-glucan (BDG) measurement kits follows a different measurement method and cut-off value. Comparisons of diagnostic performance for invasive fungal infections (IFIs) are desirable. Additionally, ecological considerations are becoming increasingly important in the development of new measurement kits. METHODS: The plasma BDG levels in clinical samples were measured using the following currently available kits: the Fungitec G test MKII, the Fungitec G test ES, Fungitell, the ß-Glucan test Wako, and the newly developed Wako kit (Wako-Eu). Wako-Eu uses a pre-treatment solution that conforms to European regulations for the registration, evaluation, authorisation, and restriction of chemicals. The values obtained for the samples using each kit were studied and compared. RESULTS: Of the 165 patients evaluated, 12 had IFIs, including pneumocystis pneumonia, aspergillosis, and candidiasis. BDG values obtained using the kits were moderately correlated with each other. Clinical diagnoses of the evaluated cases indicated that 21 false positives were diagnosed by at least one kit. The sensitivity of the Fungitell kit was relatively low, but those of the other four were over 90%. The specificity was above 90% for all kits. For positive predictive value, the Wako and the Wako-Eu methods were superior to the others owing to fewer false positive results. CONCLUSIONS: The newly developed Wako-Eu method, which considers ecological concerns, shows diagnostic performance equivalent to that of its predecessor. To improve the diagnostic accuracy of IFIs, it is necessary to interpret the results carefully, giving due consideration to the characteristics of each measurement kit.


Subject(s)
Invasive Fungal Infections/diagnosis , Reagent Kits, Diagnostic , beta-Glucans/analysis , Aged , Female , Humans , Male , Middle Aged , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...