Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.131
Filter
1.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731488

ABSTRACT

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Subject(s)
Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
2.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731604

ABSTRACT

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Subject(s)
Cell Differentiation , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Pleurotus , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology , RAW 264.7 Cells , RANK Ligand/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Pleurotus/chemistry , Receptor Activator of Nuclear Factor-kappa B/metabolism , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , beta-Glucans/pharmacology , beta-Glucans/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Osteogenesis/drug effects
3.
Food Res Int ; 183: 114226, 2024 May.
Article in English | MEDLINE | ID: mdl-38760145

ABSTRACT

Highland barley (HB) is an intriguing plateau cereal crop with high nutrition and health benefits. However, abundant dietary fiber and deficient gluten pose challenges to the processing and taste of whole HB products. Extrusion technology has been proved to be effective in overcoming these hurdles, but the association between the structure and physicochemical properties during extrusion remains inadequately unexplored. Therefore, this study aims to comprehensively understand the impact of extrusion conditions on the physicochemical properties of HB flour (HBF) and the multi-scale structure of starch. Results indicated that the nutritional value of HBF were significantly increased (soluble dietary fiber and ß-glucan increased by 24.05%, 19.85% respectively) after extrusion. Typical underlying mechanisms based on starch structure were established. High temperature facilitated starch gelatinization, resulting in double helices unwinding, amylose leaching, and starch-lipid complexes forming. These alterations enhanced the water absorption capacity, cold thickening ability, and peak viscosity of HBF. More V-type complexes impeded amylose rearrangement, thus enhancing resistance to retrogradation and thermal stability. Extrusion at high temperature and moisture exhibited similarities to hydrothermal treatment, partly promoting amylose rearrangement and enhancing HBF peak viscosity. Conversely, under low temperature and high moisture, well-swelled starch granules were easily broken into shorter branch-chains by higher shear force, which enhanced the instant solubility and retrogradation resistance of HBF as well as reduced its pasting viscosity and the capacity to form gel networks. Importantly, starch degradation products during this condition were experimentally confirmed from various aspects. This study provided some reference for profiting from extrusion for further development of HB functional food and "clean label" food additives.


Subject(s)
Amylose , Flour , Food Handling , Hordeum , Starch , Hordeum/chemistry , Starch/chemistry , Flour/analysis , Viscosity , Amylose/chemistry , Food Handling/methods , Nutritive Value , Dietary Fiber/analysis , Solubility , beta-Glucans/chemistry , Chemical Phenomena , Hot Temperature
4.
Carbohydr Res ; 538: 109099, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574411

ABSTRACT

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Subject(s)
Ascomycota , Reishi , beta-Glucans , Glucans/chemistry , Reishi/chemistry , Polysaccharides/chemistry , beta-Glucans/chemistry , Fruiting Bodies, Fungal/chemistry , Water/analysis
5.
Int J Biol Macromol ; 267(Pt 1): 131579, 2024 May.
Article in English | MEDLINE | ID: mdl-38688789

ABSTRACT

In this study, the curdlan-polyphenol complexes were constructed by a pH-driven method. The interaction between curdlan and various hydrophobic polyphenols (curcumin, quercetin, and chlorogenic acid) was investigated. Curdlan could self-assemble into particles for loading polyphenols through hydrogen bonding and hydrophobic interactions. The three polyphenols were embedded in curdlan in an amorphous state. The curdlan-curcumin complex showed the lowest viscoelasticity but exhibited the highest curcumin loading ability (34.04 ± 1.73 mg/g). However, the curdlan-chlorogenic acid complex emerged the opposite trend, indicating that the loading capacity was associated with the hydrophobicity of polyphenols. The antioxidant activity of curdlan significantly increased after combining with polyphenols, which could be maintained during in vitro simulated gastrointestinal digestion. In particular, the curdlan-quercetin complex exhibited the highest antioxidant activity and short-chain fatty acid concentration, which could influence gut microbiota composition by promoting the proliferation of Prevotella and inhibiting the growth of Escherichia_Shigella. In conclusion, the curdlan-polyphenol complexes prepared by an alcohol-free pH-driven method could effectively enhance the gastrointestinal stability of polyphenols as well as increase the antioxidant and prebiotic activities of curdlan, which could be applied as a functional ingredient to improve gut health.


Subject(s)
Antioxidants , Polyphenols , Prebiotics , beta-Glucans , beta-Glucans/chemistry , beta-Glucans/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Hydrogen-Ion Concentration , Polyphenols/chemistry , Polyphenols/pharmacology , Gastrointestinal Microbiome/drug effects , Quercetin/chemistry , Quercetin/pharmacology , Chemical Phenomena
6.
J Agric Food Chem ; 72(18): 10497-10505, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659290

ABSTRACT

Despite their broad application potential, the widespread use of ß-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of ß-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of ß-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable ß-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila (AtßOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass ß-1,3-glucans up to DP 75. Coupling of AtßOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable ß-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into ß-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.


Subject(s)
Bacterial Proteins , Enzyme Stability , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , beta-Glucans/chemistry , beta-Glucans/metabolism , Bifidobacterium adolescentis/enzymology , Bifidobacterium adolescentis/genetics , Bifidobacterium adolescentis/chemistry , Bifidobacterium adolescentis/metabolism , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Substrate Specificity , Phosphorylases/metabolism , Phosphorylases/chemistry , Phosphorylases/genetics , Clostridiales/enzymology , Clostridiales/genetics , Clostridiales/chemistry , Biocatalysis , Hot Temperature
7.
Int J Biol Macromol ; 267(Pt 1): 131162, 2024 May.
Article in English | MEDLINE | ID: mdl-38574931

ABSTRACT

We developed an efficient mixed-strain co-fermentation method to increase the yield of quinoa ß-glucan (Q+). Using a 1:1 mass ratio of highly active dry yeast and Streptococcus thermophilus, solid-to-liquid ratio of 1:12 (g/mL), inoculum size of 3.8 % (mass fraction), fermentation at 32 °C for 27 h, we achieved the highest ß-glucan yield of (11.13 ± 0.80)%, representing remarkable 100.18 % increase in yield compared to quinoa ß-glucan(Q-) extracted using hot water. The structure of Q+ and Q- were confirmed through Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. Q+ contained 41.66 % ß-glucan, 3.93 % protein, 2.12 % uronic acid; Q- contained 37.21 % ß-glucan, 11.49 % protein, and 1.73 % uronic acid. The average molecular weight of Q+(75.37 kDa) was lower than that of Q- (94.47 kDa). Both Q+ and Q- promote RAW264.7 cell proliferation without displaying toxicity. They stimulate RAW264.7 cells through the NF-κB and MAPK signaling pathways, primarily inducing NO and pro-inflammatory cytokines by upregulating CD40 expression. Notably, Q+ exhibited stronger immunostimulatory activity compared to Q-. In summary, the fermentation enrichment method yields higher content of quinoa ß-glucan with increased purity and stronger immunostimulatory properties. Further study of its bioimmunological activity and structure-activity relationship may contribute to the development of new immunostimulants.


Subject(s)
Chenopodium quinoa , Fermentation , beta-Glucans , Chenopodium quinoa/chemistry , Mice , beta-Glucans/chemistry , beta-Glucans/pharmacology , beta-Glucans/isolation & purification , Animals , RAW 264.7 Cells , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Cell Proliferation/drug effects , Molecular Weight , Streptococcus thermophilus/chemistry
8.
Int J Biol Macromol ; 267(Pt 1): 131388, 2024 May.
Article in English | MEDLINE | ID: mdl-38608982

ABSTRACT

We developed a facile method for the fabrication of a biodegradable delivery system composed of two blocks: curdlan and curcumin. This was achieved by chemical functionalization of curdlan through tosylation, amination followed by complexation with curcumin. A comprehensive evaluation of structural characterization and component stability showed that cur-cum complex exhibited better anticancer properties with enhanced thermal properties. The cur-cum complex shows pH sensitive sustained release behaviour with higher release at acidic pH and kinetic data of drug release follows the Korsmeyer-Peppas model. The cur-cum complex has ability to block the proliferation of the MCF-7 cell line as revealed by MTT assay which showed increased toxicity of cur-cum complex against these cell lines. The results obtained from western blot analysis demonstrated that the co-administration of cur and cum effectively induced apoptosis in MCF-7 cells. This effect was observed by a considerable upregulation of the Bcl-2/Bax ratio, a decline in mRNA expression of LDHA, level of lactate and LDH activity. The results clearly depict the role of functionalized curdlan as efficient carrier for curcumin delivery with prolonged, sustained release and enhanced bioavailability, thereby improving the overall anticancer activity.


Subject(s)
Apoptosis , Breast Neoplasms , Curcumin , Drug Liberation , beta-Glucans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , beta-Glucans/chemistry , beta-Glucans/pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Cell Proliferation/drug effects , Hydrogen-Ion Concentration
9.
Int J Biol Macromol ; 266(Pt 2): 131289, 2024 May.
Article in English | MEDLINE | ID: mdl-38570002

ABSTRACT

Intranasal vaccination offers crucial protection against influenza virus pandemics. However, antigens, especially subunit antigens, often fail to induce effective immune responses without the help of immune adjuvants. Our research has demonstrated that a polyelectrolyte complex, composed of curdlan sulfate/O-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (CS/O-HTCC), effectively triggers both mucosal and systemic immune responses when administrated intranasal. In this study, stable nanoparticles formed by curdlan-O-HTCC conjugate (CO NP) were prepared and characterized. Furthermore, the efficacy of CO NP was evaluated as a mucosal adjuvant in an intranasal influenza H1N1 subunit vaccine. The results revealed that CO NP exhibits uniform and spherical morphology, with a size of 190.53 ± 4.22 nm, and notably, it remains stable in PBS at 4 °C for up to 6 weeks. Biological evaluation demonstrated that CO NP stimulates the activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), both in vitro and in vivo. Furthermore, intranasal administration of CO NP effectively elicits cellular and humoral immune responses, notably enhancing mucosal immunity. Thus, CO NP emerges as a promising mucosal adjuvant for influenza subunit vaccines.


Subject(s)
Adjuvants, Immunologic , Administration, Intranasal , Chitosan , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Nanoparticles , Vaccines, Subunit , beta-Glucans , Influenza A Virus, H1N1 Subtype/immunology , Chitosan/chemistry , Nanoparticles/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/administration & dosage , beta-Glucans/chemistry , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Animals , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/administration & dosage , Mice , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Immunity, Mucosal/drug effects , Mice, Inbred BALB C , Female , Dendritic Cells/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology
10.
Int Immunopharmacol ; 132: 111985, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38603862

ABSTRACT

BACKGROUND: Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. ß-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD: BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS: BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION: The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.


Subject(s)
Asthma , CD8-Positive T-Lymphocytes , Mice, Inbred BALB C , Ovalbumin , Oxidative Stress , beta-Glucans , Animals , Oxidative Stress/drug effects , beta-Glucans/pharmacology , beta-Glucans/therapeutic use , beta-Glucans/chemistry , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Ovalbumin/immunology , Mice , Disease Models, Animal , Immunoglobulin E/blood , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/immunology , Female , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use
11.
Nat Commun ; 15(1): 3429, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653764

ABSTRACT

Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to ß-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.


Subject(s)
Bacterial Proteins , beta-Glucans , beta-Glucans/metabolism , beta-Glucans/chemistry , Crystallography, X-Ray , Binding Sites , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Models, Molecular
12.
Int J Biol Macromol ; 268(Pt 2): 131681, 2024 May.
Article in English | MEDLINE | ID: mdl-38643913

ABSTRACT

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.


Subject(s)
Bread , Hordeum , Molecular Weight , Plant Proteins , Starch , Triticum , beta-Glucans , Hordeum/chemistry , beta-Glucans/chemistry , Starch/chemistry , Bread/analysis , Triticum/chemistry , Plant Proteins/chemistry , Rheology , Digestion , Water/chemistry
13.
Food Chem ; 448: 139082, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537544

ABSTRACT

ß-galactosidase (lactase) is commercially important as a dietary supplement to alleviate the symptoms of lactose intolerance. This work investigated a unique activation of CMP (carboxymethylated (1 â†’ 3)-ß-d-glucan) on lactase and its mechanism by comparing it with carboxymethyl chitosan (CMCS), an inhibitor of lactase. The results illustrated that the secondary and tertiary structures of lactase were altered and its active sites exposed after complexation with CMP, and dissociation of lactase aggregates was also observed. These changes favored better accessibility of the substrate to the active sites of lactase, resulting in a maximum increase of 60.5 % in lactase activity. Furthermore, the hydrophobic and electrostatic interactions with lactase caused by the carboxymethyl group of CMP were shown to be crucial for its activation ability. Thus, the improvement of lactase activity and stability by CMP shown here is important for the development of new products in the food and pharmaceutical industries.


Subject(s)
Chitosan/analogs & derivatives , Hydrophobic and Hydrophilic Interactions , Static Electricity , beta-Galactosidase , beta-Glucans , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , beta-Glucans/chemistry , beta-Glucans/pharmacology , Chitosan/chemistry , Enzyme Stability , Kinetics , Enzyme Activation/drug effects
14.
Nutrients ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542811

ABSTRACT

This paper explores the multifaceted nature of ß-glucan, a notable dietary fiber (DF) with extensive applications. Beginning with an in-depth examination of its intricate polysaccharide structure, the discussion extends to diverse sources like oats, barley, mushrooms, and yeast, emphasizing their unique compositions. The absorption and metabolism of ß-glucan in the human body are scrutinized, emphasizing its potential health benefits. Extraction and purification processes for high-quality ß-glucan in food, pharmaceuticals, and cosmetics are outlined. The paper underscores ß-glucan's biofunctional roles in immune modulation, cholesterol regulation, and gastrointestinal health, supported by clinical studies. The review discusses global trade dynamics by tracing its evolution from a niche ingredient to a global commodity. In summary, it offers a comprehensive scientific perspective on ß-glucan, serving as a valuable resource for researchers, professionals, and industries exploring its potential in the dietary fiber landscape.


Subject(s)
beta-Glucans , Humans , beta-Glucans/chemistry , Biological Availability , Dietary Fiber , Cholesterol , Saccharomyces cerevisiae , Avena/chemistry
15.
Food Funct ; 15(7): 3246-3258, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446134

ABSTRACT

Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially ß-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley ß-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.


Subject(s)
Hordeum , beta-Glucans , Hordeum/chemistry , Polysaccharides/chemistry , Starch/metabolism , beta-Glucans/chemistry
16.
Int J Pharm ; 655: 123996, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38490404

ABSTRACT

The immunomodulatory properties of ß-glucans have sparked interest among various medical fields. As vaccine adjuvants, glucan particles offer additional advantages as antigen delivery systems. This study reported the immunomodulatory properties of glucan particles with different size and chemical composition. The effect of glucan microparticles (GPs) and glucan nanoparticles (Glu 130 and 355 NPs) was evaluated on human immune cells. While GPs and Glu 355 NPs demonstrated substantial interaction with Dectin-1 receptor on monocytes, Glu 130 NPs exhibited reduced activation of this receptor. This observation was substantiated by blocking Dectin-1, resulting in inhibition of reactive oxygen species production induced by GPs and Glu 355 NPs. Notably, monocyte-derived dendritic cells (moDCs) stimulated by Glu 355 NPs exhibited phenotypic and functional maturation, essential for antigen cross-presentation. The immunomodulatory efficacy was investigated using an autologous mixed lymphocyte reaction (AMLR), resulting in considerable rates of lymphocyte proliferation and an intriguing profile of cytokine and chemokine release. Our findings highlight the importance of meticulously characterizing the size and chemical composition of ß-glucan particles to draw accurate conclusions regarding their immunomodulatory activity. This in vitro model mimics the human cellular immune response, and the results obtained endorse the use of ß-glucan-based delivery systems as future vaccine adjuvants.


Subject(s)
Glucans , beta-Glucans , Humans , Glucans/pharmacology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Vaccine , beta-Glucans/pharmacology , beta-Glucans/chemistry , Antigens
17.
Int J Biol Macromol ; 264(Pt 1): 130561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431011

ABSTRACT

Beta-glucans possess the ability of retarding starch retrogradation. However, ß-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of ß-glucans related to the feature still remains unclear. In the study, the ß-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each ß-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two ß-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of ß-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity ß-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.


Subject(s)
Starch , beta-Glucans , Starch/chemistry , beta-Glucans/chemistry , Flour , Triticum/chemistry , Viscosity
18.
Int J Biol Macromol ; 264(Pt 1): 130546, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442833

ABSTRACT

ß-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. ß-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized ß-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The ß-1,3-glucan mimic polymers were synthesized using ß-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of ß-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.


Subject(s)
Glucans , beta-Glucans , Glucans/chemistry , Polymers , beta-Glucans/chemistry , Cytokines/metabolism , Lectins, C-Type
19.
Methods Mol Biol ; 2789: 101-108, 2024.
Article in English | MEDLINE | ID: mdl-38506995

ABSTRACT

Beta-glucans with diverse chemical structures are produced by a variety of microorganisms and are commonly found in microbial cell walls. ß-(1,3)-D-glucans are present in yeast and fungi, and, for this reason, their traces are commonly used as a sign of yeast or fungal infection or contamination. Despite being less immunologically active than endotoxins, beta-glucans are pro-inflammatory and can activate cytokines and other immunological responses via their cognate pattern recognition receptors. Unlike endotoxins, there is no established threshold pyrogen dose for beta-glucans; as such, their quantity in pharmaceutical products is not regulated. Nevertheless, regulatory agencies recognize the potential contribution of beta-glucans to the immunogenicity of protein-containing drug products and recommend assessing beta-glucans to aid the interpretation of immunotoxicity studies and assess the risk of immunogenicity. The protocol for the detection and quantification of ß-(1,3)-D-glucans in nanoparticle formulations is based on a modified limulus amoebocyte lysate assay. The results of this test are used to inform immunotoxicity studies of nanotechnology-based drug products.


Subject(s)
Nanoparticles , beta-Glucans , beta-Glucans/chemistry , Saccharomyces cerevisiae , Glucans , Endotoxins , Nanoparticles/adverse effects , Nanoparticles/chemistry
20.
Biomater Sci ; 12(9): 2394-2407, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38502151

ABSTRACT

Particles with a porous structure can lead to quick hemostasis and provide a good matrix for cell proliferation during wound healing. Recently, many particle-based wound healing materials have been clinically applied. However, these products show good hemostatic ability but with poor wound healing ability. To solve this problem, this study fabricated APGG composite particles using yeast ß-glucan (obtained from Saccharomyces cerevisiae), sodium alginate, and γ-polyglutamic acid as the starting materials. The structure of yeast ß-glucan was modified with many carboxymethyl groups to obtain carboxymethylated ß-glucan, which could coordinate with Ca2+ ions to form a crosslinked structure. A morphology study indicated that the APGG particles showed an irregular spheroidal structure with a low density (<0.1 g cm-3) and high porosity (>40%). An in vitro study revealed that the particles exhibited a low BCI value, low hemolysis ratio, and good cytocompatibility against L929 cells. The APGG particles could quickly stop bleeding in a mouse liver injury model and exhibited better hemostatic ability than the commercially available product Celox. Furthermore, the APGG particles could accelerate the healing of non-infected wounds, and the expression levels of CD31, α-SMA, and VEGF related to angiogenesis were significantly enhanced.


Subject(s)
Alginates , Hemostasis , Polyglutamic Acid , Polyglutamic Acid/analogs & derivatives , Saccharomyces cerevisiae , Wound Healing , beta-Glucans , Animals , Wound Healing/drug effects , Alginates/chemistry , Alginates/pharmacology , Polyglutamic Acid/chemistry , Polyglutamic Acid/pharmacology , beta-Glucans/chemistry , beta-Glucans/pharmacology , Mice , Hemostasis/drug effects , Cell Line , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/administration & dosage , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...