Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.165
Filter
1.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711033

ABSTRACT

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Subject(s)
Escherichia coli , beta-Glucans , Escherichia coli/metabolism , Escherichia coli/genetics , beta-Glucans/metabolism
2.
Food Res Int ; 186: 114287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729740

ABSTRACT

The gut microbiota is widely acknowledged as a crucial factor in regulating host health. The structure of dietary fibers determines changes in the gut microbiota and metabolic differences resulting from their fermentation, which in turn affect gut microbe-related health effects. ß-Glucan (BG) is a widely accessible dietary fiber to humans, and its structural characteristics vary depending on the source. However, the interactions between different structural BGs and gut microbiota remain unclear. This study used an in vitro fermentation model to investigate the effects of BG on gut microbiota, and microbiomics and metabolomics techniques to explore the relationship between the structure of BG, bacterial communities, and metabolic profiles. The four sources of BG (barley, yeast, algae, and microbial fermentation) contained different types and proportions of glycosidic bonds, which differentially altered the bacterial community. The BG from algal sources, which contained only ß(1 â†’ 4) glycosidic bonds, was the least metabolized by the gut microbiota and caused limited metabolic changes. The other three BGs contain more diverse glycosidic bonds and can be degraded by bacteria from multiple genera, causing a wider range of metabolic changes. This work also suggested potential synergistic degradation relationships between gut bacteria based on BG. Overall, this study deepens the structural characterization-microbial-functional understanding of BGs and provides theoretical support for the development of gut microbiota-targeted foods.


Subject(s)
Bacteria , Fermentation , Gastrointestinal Microbiome , beta-Glucans , beta-Glucans/metabolism , Gastrointestinal Microbiome/physiology , Humans , Bacteria/metabolism , Bacteria/classification , Dietary Fiber/metabolism , Metabolomics
3.
BMC Genomics ; 25(1): 495, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769483

ABSTRACT

Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, ß-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.


Subject(s)
Gene Expression Profiling , Polysaccharides , Rumen , Xylans , Animals , Xylans/metabolism , Polysaccharides/metabolism , Rumen/microbiology , Rumen/metabolism , Glucans/metabolism , beta-Glucans/metabolism , Substrate Specificity , Bacteroidetes/genetics , Bacteroidetes/metabolism , Transcriptome
4.
Proc Natl Acad Sci U S A ; 121(21): e2319707121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743622

ABSTRACT

Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and ß-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.


Subject(s)
Cell Wall , Cryptococcus neoformans , Fungal Proteins , Glucans , Glycogen , Cell Wall/metabolism , Glycogen/metabolism , Glucans/metabolism , Fungal Proteins/metabolism , Cryptococcus neoformans/metabolism , Glucosyltransferases/metabolism , beta-Glucans/metabolism
5.
Syst Appl Microbiol ; 47(2-3): 126514, 2024 May.
Article in English | MEDLINE | ID: mdl-38735274

ABSTRACT

Use of curldlan, an insoluble ß-1,3-glucan, as an enrichment substrate under aerobic conditions resulted in the selection from hypersaline soda lakes of a single natronarchaeon, strain AArc-curdl1. This organism is an obligately aerobic saccharolytic, possessing a poorly explored (in Archaea) potential to utilize beta-1-3 glucans, being only a second example of a haloarchaeon with this ability known in pure culture. The main phenotypic property of the isolate is the ability to grow with insoluble ß-1,3-backboned glucans, i.e. curdlan and pachyman. Furthermore, the strain utilized starch family α-glucans, beta-fructan inulin and a limited spectrum of sugars. The major ether-bound membrane polar phospholipids included PGP-Me and PG. The glyco- and sulfolipids were absent. The major respiratory menaquinone is MK-8:8. According to phylogenomic analysis, AArc-curdl1 represents a separate species in the recently described genus Natronosalvus within the family Natrialbaceae. The closest related species is Natronosalvus amylolyticus (ANI, AAI and DDH values of 90.2, 91.6 and 44 %, respectively). On the basis of its unique physiological properties and phylogenomic distance, strain AArc-curdl1T is classified as a novel species Natronosalvus hydrolyticus sp. nov. (=JCM 34865 = UQM 41566).


Subject(s)
Lakes , Phylogeny , RNA, Ribosomal, 16S , beta-Glucans , Lakes/microbiology , beta-Glucans/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phospholipids/analysis , Phospholipids/chemistry , Salinity , DNA, Archaeal/genetics , DNA, Archaeal/chemistry , Vitamin K 2/analysis , Vitamin K 2/chemistry , Vitamin K 2/analogs & derivatives
6.
Nat Commun ; 15(1): 3926, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724513

ABSTRACT

Patients with decreased levels of CD18 (ß2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMß2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the ß-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1ß release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.


Subject(s)
CD18 Antigens , Candidiasis , Fungal Proteins , Lectins, C-Type , Macrophages , Animals , Mice , beta-Glucans/metabolism , beta-Glucans/immunology , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , CD11b Antigen/metabolism , CD11b Antigen/immunology , CD18 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fungal Proteins/metabolism , Fungal Proteins/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Macrophages/immunology , Macrophages/metabolism , Signal Transduction
7.
Open Biol ; 14(5): 230315, 2024 May.
Article in English | MEDLINE | ID: mdl-38806144

ABSTRACT

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Subject(s)
Candida glabrata , Dendritic Cells , Macrophage-1 Antigen , T-Lymphocytes, Regulatory , beta-Glucans , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology , Animals , Macrophage-1 Antigen/metabolism , Mice , Lectins, C-Type/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL
8.
Sci Rep ; 14(1): 8179, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589471

ABSTRACT

Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 ß and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the ß-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and ß-glucan may be the potential M1-phenotype inducer.


Subject(s)
Auricularia , Breast Neoplasms , beta-Glucans , Humans , Female , Breast Neoplasms/pathology , NF-kappa B/metabolism , Macrophages/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , beta-Glucans/pharmacology , beta-Glucans/metabolism , Tumor Microenvironment
9.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38598309

ABSTRACT

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Subject(s)
Hordeum , Hordeum/enzymology , Hordeum/genetics , Substrate Specificity , Mutagenesis, Site-Directed , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Glucans/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Isoenzymes/chemistry , Mutagenesis , beta-Glucans/metabolism
10.
Nat Commun ; 15(1): 3429, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653764

ABSTRACT

Carbohydrate-binding modules (CBMs) are non-catalytic proteins found appended to carbohydrate-active enzymes. Soil and marine bacteria secrete such enzymes to scavenge nutrition, and they often use CBMs to improve reaction rates and retention of released sugars. Here we present a structural and functional analysis of the recently established CBM family 92. All proteins analysed bind preferentially to ß-1,6-glucans. This contrasts with the diversity of predicted substrates among the enzymes attached to CBM92 domains. We present crystal structures for two proteins, and confirm by mutagenesis that tryptophan residues permit ligand binding at three distinct functional binding sites on each protein. Multivalent CBM families are uncommon, so the establishment and structural characterisation of CBM92 enriches the classification database and will facilitate functional prediction in future projects. We propose that CBM92 proteins may cross-link polysaccharides in nature, and might have use in novel strategies for enzyme immobilisation.


Subject(s)
Bacterial Proteins , beta-Glucans , beta-Glucans/metabolism , beta-Glucans/chemistry , Crystallography, X-Ray , Binding Sites , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Models, Molecular
11.
J Agric Food Chem ; 72(18): 10497-10505, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659290

ABSTRACT

Despite their broad application potential, the widespread use of ß-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of ß-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of ß-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable ß-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila (AtßOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass ß-1,3-glucans up to DP 75. Coupling of AtßOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable ß-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into ß-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.


Subject(s)
Bacterial Proteins , Enzyme Stability , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , beta-Glucans/chemistry , beta-Glucans/metabolism , Bifidobacterium adolescentis/enzymology , Bifidobacterium adolescentis/genetics , Biocatalysis , Clostridiales/enzymology , Clostridiales/genetics , Clostridiales/chemistry , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Hot Temperature , Phosphorylases/metabolism , Phosphorylases/chemistry , Phosphorylases/genetics , Substrate Specificity
12.
Dev Comp Immunol ; 157: 105188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38677664

ABSTRACT

Emerging and re-emerging diseases in fish cause drastic economic losses in the aquaculture sector. To combat the impact of disease outbreaks and prevent the emergence of infections in culture systems, understanding the advanced strategies for protecting fish against infections is inevitable in fish health research. Therefore, the present study aimed to evaluate the induction of trained immunity and its protective efficacy against Streptococcus agalactiae in tilapia. For this, Nile tilapia and the Tilapia head kidney macrophage primary culture were primed using ß-glucan @200 µg/10 g body weight and 10 µg/mL respectively. Expression profiles of the markers of trained immunity and production of metabolites were monitored at different time points, post-priming and training, which depicted enhanced responsiveness. Higher lactate and lactate dehydrogenase (LDH) production in vitro suggests heightened glycolysis induced by priming of the cells using ß-glucan. A survival rate of 60% was observed in ß-glucan trained fish post challenge with virulent S. agalactiae at an LD50 of 2.6 × 107 cfu/ml, providing valuable insights into promising strategies of trained immunity for combating infections in fish.


Subject(s)
Cichlids , Fish Diseases , Macrophages , Streptococcal Infections , Streptococcus agalactiae , beta-Glucans , Animals , beta-Glucans/metabolism , Streptococcus agalactiae/immunology , Cichlids/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Macrophages/immunology , Cells, Cultured , Head Kidney/immunology , Aquaculture , Immunity, Innate , Glycolysis , L-Lactate Dehydrogenase/metabolism , Immunologic Memory , Trained Immunity
13.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656412

ABSTRACT

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Subject(s)
Amylose , Gene Editing , Hordeum , Plant Proteins , Starch Synthase , Amylose/metabolism , Hordeum/genetics , Hordeum/metabolism , Gene Editing/methods , Starch Synthase/genetics , Starch Synthase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , CRISPR-Cas Systems , Amylopectin/metabolism , Sucrose/metabolism , Sugars/metabolism , Gene Expression Regulation, Plant , Mutation , beta-Glucans/metabolism , Plants, Genetically Modified , Solubility
14.
Virulence ; 15(1): 2333367, 2024 12.
Article in English | MEDLINE | ID: mdl-38515333

ABSTRACT

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Subject(s)
Candida albicans , beta-Glucans , Humans , Candida albicans/metabolism , Host-Pathogen Interactions , Macrophages/microbiology , Monocytes/microbiology , beta-Glucans/metabolism
15.
FEBS J ; 291(9): 2009-2022, 2024 May.
Article in English | MEDLINE | ID: mdl-38380733

ABSTRACT

Laminaripentaose (L5)-producing ß-1,3-glucanases can preferentially cleave the triple-helix curdlan into ß-1,3-glucooligosaccharides, especially L5. In this study, a newly identified member of the glycoside hydrolase family 64, ß-1,3-glucanase from Streptomyces pratensis (SpGlu64A), was functionally and structurally characterized. SpGlu64A shared highest identity (30%) with a ß-1,3-glucanase from Streptomyces matensis. The purified SpGlu64A showed maximal activity at pH 7.5 and 50 °C, and exhibited strict substrate specificity toward curdlan (83.1 U·mg-1). It efficiently hydrolyzed curdlan to produce L5 as the end product. The overall structure of SpGlu64A consisted of a barrel domain and a mixed (α/ß) domain, which formed an unusually wide groove with a crescent-like structure. In the two complex structures (SpGlu64A-L3 and SpGlu64A-L4), two oligosaccharide chains were captured and the triple-helical structure was relatively compatible with the wide groove, which suggested the possibility of binding to the triple-helical ß-1,3-glucan. A catalytic framework (ß6-ß9-ß10) and the steric hindrance formed by the side chains of residues Y161, N163, and H393 in the catalytic groove were predicted to complete the exotype-like cleavage manner. On the basis of the structure, a fusion protein with the CBM56 domain (SpGlu64A-CBM) and a mutant (Y161F; by site-directed mutation) were obtained, with 1.2- and 1.7-fold increases in specific activity, respectively. Moreover, the combined expression of SpGlu64A-CBM and -Y161F improved the enzyme activity by 2.63-fold. The study will not only be helpful in understanding the reaction mechanism of ß-1,3-glucanases but will also provide a basis for further enzyme engineering.


Subject(s)
Oligosaccharides , Streptomyces , beta-Glucans , Streptomyces/enzymology , Streptomyces/genetics , Substrate Specificity , beta-Glucans/metabolism , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Models, Molecular , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics , Glucan 1,3-beta-Glucosidase/chemistry , Amino Acid Sequence , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Hydrogen-Ion Concentration , Kinetics
16.
Nat Commun ; 15(1): 1844, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418509

ABSTRACT

The synthesis of complex sugars is a key aspect of microbial biology. Cyclic ß-1,2-glucan (CßG) is a circular polysaccharide critical for host interactions of many bacteria, including major pathogens of humans (Brucella) and plants (Agrobacterium). CßG is produced by the cyclic glucan synthase (Cgs), a multi-domain membrane protein. So far, its structure as well as the mechanism underlining the synthesis have not been clarified. Here we use cryo-electron microscopy (cryo-EM) and functional approaches to study Cgs from A. tumefaciens. We determine the structure of this complex protein machinery and clarify key aspects of CßG synthesis, revealing a distinct mechanism that uses a tyrosine-linked oligosaccharide intermediate in cycles of polymerization and processing of the glucan chain. Our research opens possibilities for combating pathogens that rely on polysaccharide virulence factors and may lead to synthetic biology approaches for producing complex cyclic sugars.


Subject(s)
Agrobacterium tumefaciens , Glucosyltransferases , beta-Glucans , Humans , Agrobacterium tumefaciens/metabolism , Brucella abortus/metabolism , Cryoelectron Microscopy , beta-Glucans/metabolism , Glucans/metabolism , Sugars/metabolism
17.
Genes (Basel) ; 15(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38397157

ABSTRACT

In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. Aegilops caudata, a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the CslF6 gene sequence and protein structure of Aegilops caudata, employing comparative analysis with other grass species to identify potential differences impacting ß-glucan content. The study involves comprehensive isolation and characterization of the CslF6 gene in Ae. caudata, utilizing genomic sequence analysis, protein structure prediction, and comparative genomics. Comparisons with sequences from diverse monocots reveal evolutionary relationships, highlighting high identities with wheat genomes. Specific amino acid motifs in the CslF6 enzyme sequence, particularly those proximal to key catalytic motifs, exhibit variations among monocot species. These differences likely contribute to alterations in ß-glucan composition, notably impacting the DP3:DP4 ratio, which is crucial for understanding and modulating the final ß-glucan content. The study positions Ae. caudata uniquely within the evolutionary landscape of CslF6 among monocots, suggesting potential genetic divergence or unique functional adaptations within this species. Overall, this investigation enriches our understanding of ß-glucan biosynthesis, shedding light on the role of specific amino acid residues in modulating enzymatic activity and polysaccharide composition.


Subject(s)
Aegilops , beta-Glucans , Aegilops/genetics , beta-Glucans/metabolism , Poaceae/genetics , Poaceae/metabolism , Triticum/genetics
18.
Antimicrob Agents Chemother ; 68(2): e0081123, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38206037

ABSTRACT

Pneumocystis jirovecii, the fungus that causes Pneumocystis jirovecii pneumonia (PJP), is a leading cause of morbidity and mortality in immunocompromised individuals. We have previously shown that lung epithelial cells can bind Pneumocystis spp. ß-glucans via the EphA2 receptor, resulting in activation and release of proinflammatory cytokines. Herein, we show that in vivo Pneumocystis spp. ß-glucans activation of the inflammatory signaling cascade in macrophages can be pharmacodynamically inhibited with the EphA2 receptor small-molecule inhibitor ALW-II-41-27. In vitro, when ALW-II-41-27 is administrated via intraperitoneal to mice prior to the administration of highly proinflammatory Saccharomyces cerevisiae ß-glucans in the lung, a significant reduction in TNF-alpha release was noted in the ALW-II-41-27 pre-treated group. Taken together, our data suggest that targeting host lung macrophage activation via EphA2 receptor-fungal ß-glucans interactions with ALW-II-41-27 or other EphA2 receptor kinase targeting inhibitors might be an attractive and viable strategy to reduce detrimental lung inflammation associated with PJP.


Subject(s)
Benzamides , Niacinamide/analogs & derivatives , Pneumocystis carinii , Pneumocystis , Pneumonia, Pneumocystis , Receptor, EphA2 , beta-Glucans , Mice , Animals , beta-Glucans/metabolism , Receptor Protein-Tyrosine Kinases , Pneumonia, Pneumocystis/microbiology , Macrophages/microbiology , Immunocompromised Host
19.
Antimicrob Agents Chemother ; 68(3): e0075623, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38259086

ABSTRACT

Pneumocystis cyst life forms contain abundant ß-glucan carbohydrates, synthesized using ß-1,3 and ß-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for ß-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.


Subject(s)
Pneumocystis carinii , Pneumocystis , Pneumonia, Pneumocystis , beta-Glucans , Humans , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/drug therapy , Phosphoglucomutase/genetics , Phosphoglucomutase/metabolism , Phosphoglucomutase/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Lithium/metabolism , Lithium/pharmacology , Pneumocystis/genetics , beta-Glucans/metabolism , Phosphates/pharmacology , Glucose/metabolism , Uridine Diphosphate/metabolism , Uridine Diphosphate/pharmacology
20.
Cell Rep ; 43(1): 113642, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38175756

ABSTRACT

The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to ß-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.


Subject(s)
Drosophila Proteins , Parasites , beta-Glucans , Animals , Drosophila/metabolism , Antifungal Agents/pharmacology , beta-Glucans/pharmacology , beta-Glucans/metabolism , Parasites/metabolism , Drosophila Proteins/metabolism , Carrier Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...