Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
BMC Neurol ; 23(1): 240, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344817

ABSTRACT

BACKGROUND: Sandhoff disease (SD) is a rare neurological disease with high clinical heterogeneity. SD in juvenile form is much rarer and it is often misdiagnosed in clinics. Therein, it is necessary to provide more cases and review the literature on juvenile onset SD. CASE PRESENTATION: A 14 years-old boy with eight years of walking difficulties, and was ever misdiagnosed as spinocerebellar ataxia. We found this patient after genetic testing carried rs201580118 and a novel gross deletion in HEXB (g.74012742_74052694del). Through review the literature, we found that was the first gross deletion identified at the 3'end of HEXB, associated with juvenile onset SD from China. CONCLUSION: This case expanded our knowledge about the genotype and phenotype correlations in SD. Comprehensive genetic testing is important for the diagnosis of unexplained ataxia.


Subject(s)
Sandhoff Disease , Humans , Sandhoff Disease/diagnosis , Sandhoff Disease/genetics , beta-Hexosaminidase beta Chain/genetics , Genetic Testing , Genotype , Phenotype , Mutation
2.
Medicine (Baltimore) ; 102(24): e33890, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37327298

ABSTRACT

BACKGROUND: Sandhoff disease (SD, Online Mendelian Inheritance in Man: 268800) is an autosomal recessive lysosomal storage disorder caused by variants of the ß-hexosaminidase B (HEXB) gene (Online Mendelian Inheritance in Man: 606873). The HEXB gene has been mapped to chromosome 5q13 and contains 14 exons. The symptoms of SD include progressive weakness, intellectual disability, visual and hearing impairment, exaggerated startle response, and seizures; the patients usually die before the age of 3 years.[1]. CASE SUMMARY: We present a case of SD caused by a homozygous frameshift mutation in the HEXB gene, c.118delG (p.A40fs*24). The male child, aged 2 years 7 months, showed movement retrogression with orbital hypertelorism at age 2 years, accompanied by seizures. Magnetic resonance imaging of the head showed cerebral atrophy and delayed myelination of the white matter of the brain. CONCLUSION: A novel homozygous frameshift c.118delG (p.A40fs*24) variant of HEXB has caused SD in the child. The major symptoms are intellectual disability, visual and hearing impairment, and seizures. Investigation will be continued in the future to comprehensively describe the genotype/phenotype and gain information on other associated features to understand the variable expressivity of this condition.


Subject(s)
Intellectual Disability , Sandhoff Disease , Humans , Male , beta-Hexosaminidase beta Chain/genetics , beta-N-Acetylhexosaminidases/genetics , Frameshift Mutation , Hexosaminidase B/genetics , Mutation , Sandhoff Disease/diagnosis , Sandhoff Disease/genetics , Seizures , Child, Preschool
3.
Metab Brain Dis ; 37(8): 2669-2675, 2022 12.
Article in English | MEDLINE | ID: mdl-36190588

ABSTRACT

Sandhoff disease is a rare neurodegenerative and autosomal recessive disorder, which is characterized by a defect in ganglioside metabolism. Also, it is caused by mutations in the HEXB gene for the ß-subunit isoform 1 of ß-N-acetyl hexosaminidase. In the present study, an Iranian 14- month -old girl with 8- month history of unsteady walking and involuntary movements was described. In this regard, biochemical testing showed some defects in the normal activity of beta-hexosaminidase protein. Following sequencing of HEXB gene, a homozygous c.833C > T mutation was identified in the patient's genome. After recognition of p.A278V, several different in silico methods were used to assess the mutant protein stability, ranging from mutation prediction methods to ligand docking. The p.A278V mutation might be disruptive because of changing the three-dimensional folding at the end of the 5th alpha helix. According to the medical prognosis, in silico and structural analyses, it was predicted to be disease cause.


Subject(s)
Sandhoff Disease , Female , Humans , Sandhoff Disease/genetics , Sandhoff Disease/metabolism , Iran , Mutation , Homozygote , beta-Hexosaminidase beta Chain/genetics
4.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162960

ABSTRACT

Inhibition of the human O-linked ß-N-acetylglucosaminidase (hOGA, GH84) enzyme is pharmacologically relevant in several diseases such as neurodegenerative and cardiovascular disorders, type 2 diabetes, and cancer. Human lysosomal hexosaminidases (hHexA and hHexB, GH20) are mechanistically related enzymes; therefore, selective inhibition of these enzymes is crucial in terms of potential applications. In order to extend the structure-activity relationships of OGA inhibitors, a series of 2-acetamido-2-deoxy-d-glucono-1,5-lactone sulfonylhydrazones was prepared from d-glucosamine. The synthetic sequence involved condensation of N-acetyl-3,4,6-tri-O-acetyl-d-glucosamine with arenesulfonylhydrazines, followed by MnO2 oxidation to the corresponding glucono-1,5-lactone sulfonylhydrazones. Removal of the O-acetyl protecting groups by NH3/MeOH furnished the test compounds. Evaluation of these compounds by enzyme kinetic methods against hOGA and hHexB revealed potent nanomolar competitive inhibition of both enzymes, with no significant selectivity towards either. The most efficient inhibitor of hOGA was 2-acetamido-2-deoxy-d-glucono-1,5-lactone 1-naphthalenesulfonylhydrazone (5f, Ki = 27 nM). This compound had a Ki of 6.8 nM towards hHexB. To assess the binding mode of these inhibitors to hOGA, computational studies (Prime protein-ligand refinement and QM/MM optimizations) were performed, which suggested the binding preference of the glucono-1,5-lactone sulfonylhydrazones in an s-cis conformation for all test compounds.


Subject(s)
Antigens, Neoplasm/chemistry , Histone Acetyltransferases/chemistry , Hyaluronoglucosaminidase/chemistry , Hydrazones/chemical synthesis , Lactones/chemistry , beta-Hexosaminidase beta Chain/chemistry , Antigens, Neoplasm/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Acetyltransferases/metabolism , Humans , Hyaluronoglucosaminidase/metabolism , Hydrazones/chemistry , Hydrazones/pharmacology , Manganese Compounds/chemistry , Models, Molecular , Molecular Conformation , Oxides/chemistry , Structure-Activity Relationship , beta-Hexosaminidase beta Chain/metabolism
5.
J Mol Neurosci ; 72(3): 555-564, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34554397

ABSTRACT

Lysosomal storage diseases (LSDs) are known as genetic disorders with an overall prevalence of 1 per 7700 live births. Sphingolipidosis, which is a subgroup of LSDs, is resulted from mutations in the coding genes of specific enzymes of sphingolipid hydrolases. The current study aimed to provide additional knowledge on the genotype of sphingolipidoses disease among Iranian patients affected by the disease. In this research, we studied 68 unrelated Iranian patients diagnosed with one kind of sphingolipidoses from 2014 to 2019. Thereafter, genomic DNA was isolated from their peripheral blood leukocytes samples in EDTA in terms of the manufacturer's protocol. All the coding exons and exon-intron boundaries of the related genes were sequenced and then analyzed using the NCBI database. Finally, they were reviewed using some databases such as the Human Gene Mutation Database (HGMD) and ClinVar ( https://www.ncbi.nlm.nih.gov/clinva ). By studying 22 MLD patients, 18 different variations of the ARSA gene were found, one of which was new including, named as c.472 T > G p. (Cys158Gly). Out of 15 Sandhoff disease (SD) patients, 11 different variations of the HEXB gene were found. Correspondingly, the c.1083-2delA was not reported earlier. By investigating 21 Iranian patients with Tay-Sachs disease (TSD), one new variant was found as c.622delG. The study of 10 Niemann-Pick disease A/B (NPDA/B (patients has led to the identification of 9 different SMPD1 gene variations, among which 3 variations were novel mutations. The results of the present study can be expanded to the genotypic spectrum of Iranian patients with MLD, SD, TSD, and NPD diseases and also used to innovate more effective methods for the detection of genetic carriers as well as diagnosing and counseling of Iranian patients affected with these disorders.


Subject(s)
Tay-Sachs Disease , Exons , Genotype , Heterozygote , Humans , Iran , Mutation , Sphingomyelin Phosphodiesterase , Tay-Sachs Disease/genetics , beta-Hexosaminidase alpha Chain , beta-Hexosaminidase beta Chain/genetics
7.
BMC Pediatr ; 21(1): 22, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33407268

ABSTRACT

BACKGROUND: Sandhoff disease (SD) is an autosomal recessive lysosomal storage disorder, resulting in accumulation of GM2 ganglioside, particular in neuronal cells. The disorder is caused by deficiency of ß-hexosaminidase B (HEX-B), due to pathogenic variant of human HEXB gene. METHOD: This study describes clinical features, biochemical, and genetic defects among Thai patients with infantile SD during 2008-2019. RESULTS: Five unrelated Thai patients presenting with developmental regression, axial hypotonia, seizures, exaggerated startle response to noise, and macular cherry red spot were confirmed to have infantile SD based on deficient HEX enzyme activities and biallelic variants of the HEXB gene. In addition, an uncommon presenting feature, cardiac defect, was observed in one patient. All the patients died in their early childhood. Plasma total HEX and HEX-B activities were severely deficient. Sequencing analysis of HEXB gene identified two variants including c.1652G>A (p.Cys551Tyr) and a novel variant of c.761T>C (p.Leu254Ser), in 90 and 10% of the mutant alleles found, respectively. The results from in silico analysis using multiple bioinformatics tools were in agreement that the p.Cys551Tyr and the p.Leu254Ser are likely pathogenic variants. Molecular modelling suggested that the Cys551Tyr disrupt disulfide bond, leading to protein destabilization while the Leu254Ser resulted in change of secondary structure from helix to coil and disturbing conformation of the active site of the enzyme. Genome-wide SNP array analysis showed no significant relatedness between the five affected individuals. These two variants were not present in control individuals. The prevalence of infantile SD in Thai population is estimated 1 in 1,458,521 and carrier frequency at 1 in 604. CONCLUSION: The study suggests that SD likely represents the most common subtype of rare infantile GM2 gangliosidosis identified among Thai patients. We firstly described a potential common variant in HEXB in Thai patients with infantile onset SD. The data can aid a rapid molecular confirmation of infantile SD starting with the hotspot variant and the use of expanded carrier testing.


Subject(s)
Sandhoff Disease , beta-Hexosaminidase beta Chain , Child, Preschool , Hexosaminidase B/genetics , Humans , Mutation , Sandhoff Disease/diagnosis , Sandhoff Disease/genetics , Thailand
8.
Nat Immunol ; 21(7): 802-815, 2020 07.
Article in English | MEDLINE | ID: mdl-32541832

ABSTRACT

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Subject(s)
Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Facial Nerve Injuries/pathology , Microglia/metabolism , beta-Hexosaminidase beta Chain/metabolism , Animals , Brain/cytology , Brain/immunology , CRISPR-Cas Systems/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Facial Nerve Injuries/immunology , Gene Knock-In Techniques , Genes, Reporter/genetics , Genetic Loci/genetics , Humans , Intravital Microscopy , Luminescent Agents/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , Microglia/immunology , NIH 3T3 Cells , RNA-Seq , Single-Cell Analysis , Transfection , beta-Hexosaminidase beta Chain/genetics , Red Fluorescent Protein
9.
J Gene Med ; 22(9): e3205, 2020 09.
Article in English | MEDLINE | ID: mdl-32335981

ABSTRACT

BACKGROUND: Tay-Sachs and Sandhoff disease are debilitating genetic diseases that affect the central nervous system leading to neurodegeneration through the accumulation of GM2 gangliosides. There are no cures for these diseases and treatments do not alleviate all symptoms. Hematopoietic stem cell gene therapy offers a promising treatment strategy for delivering wild-type enzymes to affected cells. By genetically modifying hematopoietic stem cells to express wild-type HexA and HexB, systemic delivery of functional enzyme can be achieved. METHODS: Primary human hematopoietic stem/progenitor cells and Tay-Sachs affected cells were used to evaluate the functionality of the vector. An immunodeficient and humanized mouse model of Sandhoff disease was used to evaluate whether the HexA/HexB lentiviral vector transduced cells were able to improve the phenotypes associated with Sandhoff disease. An immunodeficient NOD-RAG1-/-IL2-/- (NRG) mouse model was used to evaluate whether the HexA/HexB vector transduced human CD34+ cells were able to engraft and undergo normal multilineage hematopoiesis. RESULTS: HexA/HexB lentiviral vector transduced cells demonstrated strong expression of HexA and HexB and restored enzyme activity in Tay-Sachs affected cells. Upon transplantation into a humanized Sandhoff disease mouse model, improved motor and behavioral skills were observed. Decreased GM2 gangliosides were observed in the brains of HexA/HexB vector transduced cell transplanted mice. Increased peripheral blood levels of HexB was also observed in transplanted mice. Normal hematopoiesis in the peripheral blood and various lymphoid organs was also observed in transplanted NRG mice. CONCLUSIONS: These results highlight the potential use of stem cell gene therapy as a treatment strategy for Tay-Sachs and Sandhoff disease.


Subject(s)
Antigens, CD34/genetics , Motor Activity/genetics , Sandhoff Disease/genetics , Tay-Sachs Disease/genetics , Animals , Behavior, Animal/physiology , Disease Models, Animal , Genetic Vectors/pharmacology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Humans , Interleukin-2/genetics , Lentivirus/genetics , Mice , Mice, Inbred NOD , Sandhoff Disease/pathology , Sandhoff Disease/therapy , Tay-Sachs Disease/pathology , Tay-Sachs Disease/therapy , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase beta Chain/genetics
10.
J Am Soc Mass Spectrom ; 31(4): 856-863, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32125841

ABSTRACT

Mast cells are essential in mediating inflammatory processes. When activated, mast cells can rapidly release characteristic granules and various mediators into the interstitium. Tryptase (TPS) and ß-hexosaminidase (HEXB) are typical protease mediators stored in granules and released upon activation. They have been recognized as important biomarkers of anaphylaxis, and the released level is associated with the severity of allergic reactions. In this study, a sensitive, accurate, and selective liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneously quantifying the two biomarkers was developed and validated in LAD2 cell culture supernatant, and P14R was used as internal standard. Good linearity was observed in the range of 50-2500 ng/mL for TPS and 10-2000 ng/mL for HEXB both with R2 > 0.99. The matrix effect and recovery were both within acceptable limits. We quantified TPS and HEXB released from Laboratory of Allergic Disease 2 (LAD2) mast cells treated with several potential allergens, and the results demonstrate that the method can be used to investigate TPS and HEXB levels in LAD2 mast cell model during allergy research. We anticipate our approach to be a robust and sensitive assessment method for more biomarkers with similar kinetics characteristics and to be a major tool of allergic drug assessment or antiallergic drug development in research.


Subject(s)
Allergens/toxicity , Anaphylaxis/chemically induced , Biomarkers/analysis , Chromatography, Liquid/methods , Mast Cells/drug effects , Tandem Mass Spectrometry/methods , Anaphylaxis/metabolism , Anaphylaxis/pathology , Cells, Cultured , Drug Evaluation, Preclinical , Glycosides/toxicity , Humans , Isoflavones/pharmacology , Limit of Detection , Mast Cells/metabolism , Tryptases/analysis , beta-Hexosaminidase beta Chain/analysis
11.
J Mol Neurosci ; 70(4): 481-487, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31919734

ABSTRACT

Infantile Sandhoff disease is an autosomal recessive inherited disease primarily characterized by cherry red spots in the retina, muscle weakness, seizure, truncal hypotonia, hyperacusis, developmental delay and regression. The pathogenic genetic defects of the HEXB gene, which encodes the ß subunit of the hexosaminidase A (ɑß) and hexosaminidase B (ßß) enzymes, cause deficiency of both the Hex A and Hex B enzymes, resulting in the deposition of GM2 ganglion glycerides in the lysosomes of the central nervous system and somatic cells. The aim of this study was to discover disease-causing variants of the HEXB gene in two Chinese families through the use of exome sequencing. By characterizing three novel variants by molecular genetics, bioinformatics analysis, and three-dimensional structure modeling, we showed that all these novel variants influenced the protein structure. The results broaden the variant spectrum of HEXB in different ethnic groups. Furthermore, not all patients diagnosed with infantile Sandhoff disease had characteristic cranial imaging findings, which can only be used as supplementary information for diagnosis. The results of this study may contribute to clinical management, genetic counseling, and gene-targeted treatments for Sandhoff disease.


Subject(s)
Sandhoff Disease/genetics , beta-Hexosaminidase beta Chain/genetics , Brain/diagnostic imaging , Female , Fundus Oculi , Humans , Infant , Mutation , Protein Domains , Sandhoff Disease/pathology , beta-Hexosaminidase beta Chain/chemistry
12.
J Cereb Blood Flow Metab ; 40(6): 1338-1350, 2020 06.
Article in English | MEDLINE | ID: mdl-31357902

ABSTRACT

In Tay-Sachs and Sandhoff disease, a deficiency of the lysosomal enzyme ß-hexosaminidase causes GM2 and other gangliosides to accumulate in neurons and triggers neurodegeneration. Although the pathology centers on neurons, ß-hexosaminidase is mainly expressed outside of neurons, suggesting that gene therapy of these diseases should target non-neuronal cells to reconstitute physiological conditions. Here, we tested in Hexb-/- mice, a model of Sandhoff disease, to determine whether endothelial expression of the genes for human ß-hexosaminidase subunit A and B (HEXA, HEXB) is able to reduce disease symptoms and prolong survival of the affected mice. The brain endothelial selective vectors AAV-BR1-CAG-HEXA and AAV-BR1-CAG-HEXB transduced brain endothelial cells, which subsequently released ß-hexosaminidase enzyme. In vivo intravenous administration of the gene vectors to adult and neonatal mice prolonged survival. They improved neurological function and reduced accumulation of the ganglioside GM2 and the glycolipid GA2 as well as astrocytic activation. Overall, the data demonstrate that endothelial cells are a suitable target for intravenous gene therapy of GM2 gangliosidoses and possibly other lysosomal storage disorders.


Subject(s)
Endothelial Cells , Genetic Therapy/methods , Sandhoff Disease , beta-Hexosaminidase alpha Chain/administration & dosage , beta-Hexosaminidase beta Chain/administration & dosage , Animals , Brain , Dependovirus , Disease Models, Animal , Genetic Vectors , Humans , Mice , Mice, Knockout , Transduction, Genetic , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase beta Chain/genetics
13.
Neurobiol Dis ; 134: 104667, 2020 02.
Article in English | MEDLINE | ID: mdl-31682993

ABSTRACT

The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or ß-subunits of the lysosomal ß-Hexosaminidase enzyme. In physiological conditions, α- and ß-subunits combine to generate ß-Hexosaminidase A (HexA, αß) and ß-Hexosaminidase B (HexB, ßß). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and ß-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and ß-subunits, leading to supranormal levels of ß-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of ß-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or ß-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.


Subject(s)
Gangliosidoses, GM2/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cells/metabolism , Neural Stem Cells/metabolism , beta-Hexosaminidase alpha Chain/metabolism , beta-Hexosaminidase beta Chain/metabolism , Animals , Gangliosidoses, GM2/genetics , Genetic Vectors , Humans , Lentivirus , Mice , beta-Hexosaminidase alpha Chain/genetics , beta-Hexosaminidase beta Chain/genetics
14.
BMC Med Genet ; 20(1): 199, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852446

ABSTRACT

BACKGROUND: Neurological disorders are a common cause of morbidity and mortality within Pakistani populations. It is one of the most important challenges in healthcare, with significant life-long socio-economic burden. METHODS: We investigated the cause of disease in three Pakistani families in individuals with unexplained autosomal recessive neurological conditions, using both genome-wide SNP mapping and whole exome sequencing (WES) of affected individuals. RESULTS: We identified a homozygous splice site variant (NM_000521:c.445 + 1G > T) in the hexosaminidase B (HEXB) gene confirming a diagnosis of Sandhoff disease (SD; type II GM2-gangliosidosis), an autosomal recessive lysosomal storage disorder caused by deficiency of hexosaminidases in a single family. In two further unrelated families, we identified a homozygous frameshift variant (NM_024298.3:c.758_778del; p.Glu253_Ala259del) in membrane-bound O-acyltransferase family member 7 (MBOAT7) as the likely cause of disease. MBOAT7 gene variants have recently been identified as a cause of intellectual disability (ID), seizures and autistic features. CONCLUSIONS: We identified two metabolic disorders of lipid biosynthesis within three Pakistani families presenting with undiagnosed neurodevelopmental conditions. These findings enabled an accurate neurological disease diagnosis to be provided for these families, facilitating disease management and genetic counselling within this population. This study consolidates variation within MBOAT7 as a cause of neurodevelopmental disorder, broadens knowledge of the clinical outcomes associated with MBOAT7-related disorder, and confirms the likely presence of a regionally prevalent founder variant (c.758_778del; p.Glu253_Ala259del) in Pakistan.


Subject(s)
Acyltransferases/genetics , Homozygote , Membrane Proteins/genetics , Nervous System Diseases/genetics , beta-Hexosaminidase beta Chain/genetics , Consanguinity , Electroencephalography , Female , Genes, Recessive , Humans , Infant , Magnetic Resonance Imaging , Male , Mutation , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/physiopathology , Pakistan , Polymorphism, Single Nucleotide , Exome Sequencing
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(9): 930-934, 2019 Sep 10.
Article in Chinese | MEDLINE | ID: mdl-31515793

ABSTRACT

OBJECTIVE: To detect potential mutations of HEXB gene in an infant with Sandhoff disease (SD). METHODS: Genomic DNA was extracted from peripheral blood sample of the infant. All coding exons (exons 1 to 14) and splicing sites of the HEXB gene were subjected to PCR amplification and direct sequencing.PubMed Protein BLAST system was employed to analyze cross-species conservation of the mutant amino acid. PubMed BLAST CD-search was performed to identify functional domains destroyed by thecandidate mutations. Impact of the mutations was analyzed with software including PolyPhen-2, Mutation Taster and SIFT. Whole-exome sequencing was carried out to identify additional mutations. RESULTS: The infant was found to carry compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) of the HEXB gene. The c.1389C>G (p.Tyr463*) mutation may lead to destruction of two functional domains in ß subunit of the Hex protein. The c.1652G>A(p.Cys551Tyr) mutation, unreported previously,was predicted to be probably damaging by Bioinformatic analysis. CONCLUSION: Compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) in the HEXB gene probably underlie the disease in this patient.


Subject(s)
Sandhoff Disease/genetics , beta-Hexosaminidase beta Chain/genetics , DNA Mutational Analysis , Exons , Heterozygote , Humans , Infant , Mutation , Polymerase Chain Reaction
16.
Mol Ther ; 27(8): 1495-1506, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31208914

ABSTRACT

Neuronopathic glycosphingolipidoses are a sub-group of lysosomal storage disorders for which there are presently no effective therapies. Here, we evaluated the potential of substrate reduction therapy (SRT) using an inhibitor of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide (GL1) and related glycosphingolipids. The substrates that accumulate in Sandhoff disease (e.g., ganglioside GM2 and its nonacylated derivative, lyso-GM2) are distal to the drug target, GCS. Treatment of Sandhoff mice with a GCS inhibitor that has demonstrated CNS access (Genz-682452) reduced the accumulation of GL1 and GM2, as well as a variety of disease-associated substrates in the liver and brain. Concomitant with these effects was a significant decrease in the expression of CD68 and glycoprotein non-metastatic melanoma B protein (Gpnmb) in the brain, indicating a reduction in microgliosis in the treated mice. Moreover, using in vivo imaging, we showed that the monocytic biomarker translocator protein (TSPO), which was elevated in Sandhoff mice, was normalized following Genz-682452 treatment. These positive effects translated in turn into a delay (∼28 days) in loss of motor function and coordination, as measured by rotarod latency, and a significant increase in longevity (∼17.5%). Together, these results support the development of SRT for the treatment of gangliosidoses, particularly in patients with residual enzyme activity.


Subject(s)
Carbamates/pharmacology , Enzyme Inhibitors/pharmacology , Glucosyltransferases/antagonists & inhibitors , Quinuclidines/pharmacology , Sandhoff Disease/enzymology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Ligands , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mass Spectrometry , Mice , Mice, Knockout , Molecular Imaging , Receptors, GABA/metabolism , Sandhoff Disease/diagnosis , Sandhoff Disease/genetics , Sandhoff Disease/therapy , Sphingolipids/metabolism , beta-Hexosaminidase beta Chain/genetics , beta-Hexosaminidase beta Chain/metabolism
17.
Glia ; 67(9): 1705-1718, 2019 09.
Article in English | MEDLINE | ID: mdl-31140649

ABSTRACT

Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by ß-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb-/- ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb-/- zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb-/- ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo.


Subject(s)
Brain/enzymology , Brain/growth & development , Lysosomes/enzymology , Neuroglia/enzymology , beta-Hexosaminidase beta Chain/genetics , Animals , Animals, Genetically Modified , Apoptosis/physiology , Brain/pathology , Disease Models, Animal , Lysosomes/pathology , Motor Activity/physiology , Neuroglia/pathology , Sphingolipidoses/enzymology , Zebrafish
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-776772

ABSTRACT

OBJECTIVE@#To detect potential mutations of HEXB gene in an infant with Sandhoff disease (SD).@*METHODS@#Genomic DNA was extracted from peripheral blood sample of the infant. All coding exons (exons 1 to 14) and splicing sites of the HEXB gene were subjected to PCR amplification and direct sequencing.PubMed Protein BLAST system was employed to analyze cross-species conservation of the mutant amino acid. PubMed BLAST CD-search was performed to identify functional domains destroyed by thecandidate mutations. Impact of the mutations was analyzed with software including PolyPhen-2, Mutation Taster and SIFT. Whole-exome sequencing was carried out to identify additional mutations.@*RESULTS@#The infant was found to carry compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) of the HEXB gene. The c.1389C>G (p.Tyr463*) mutation may lead to destruction of two functional domains in β subunit of the Hex protein. The c.1652G>A(p.Cys551Tyr) mutation, unreported previously,was predicted to be probably damaging by Bioinformatic analysis.@*CONCLUSION@#Compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) in the HEXB gene probably underlie the disease in this patient.


Subject(s)
Humans , Infant , DNA Mutational Analysis , Exons , Heterozygote , Mutation , Polymerase Chain Reaction , Sandhoff Disease , Genetics , beta-Hexosaminidase beta Chain , Genetics
19.
Orphanet J Rare Dis ; 13(1): 130, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30075786

ABSTRACT

BACKGROUND: Infantile Sandhoff disease (ISD) is a GM2 gangliosidosis that is classified as a lysosomal storage disorder. The most common symptoms of affected individuals at presentation are neurologic involvement. Here we report clinical course and demographic features in a case series of infantile Sandhoff disease. Enzymatically and some genetically proven cases of ISD were extracted from the Iranian Neurometabolic Registry (INMR) in Children's Medical Center, Iran, Tehran from December 2010 to December 2016. RESULT: Twenty five cases of infantile SD (13 female, 12 male) were included in this study. The age range of patients was 9-24 months with a mean of 15.8 months. The consanguinity rate of parents affected families was about 80%. The mean age of patients at disease onset was 6.4 months and the mean age at diagnosis was 14 months. Patients were diagnosed with a mean delay of 7.8 months. Eleven of patients died due to aspiration pneumonia and intractable seizure. The most common features at presentation (92%) were developmental delay or regression in speech and cognitive domains. Cherry red spots were detected in 17 patients (68%). Organomegaly was detected only in two patients. Enzyme studies showed marked reductions of both Hexosaminidase A and B in all patients. HEXB gene mutation studies performed in eight patients identified 6 different mutations, which five of them were novel. CONCLUSION: Infantile SD should be considered for each child presented with neurologic symptoms such as developmental delay and regression and cherry red spots in ophthalmic examination. Organomegaly is not a frequent clinical finding in infantile SD. Additionally; there are a genetic heterogenisity among Iranian patients.


Subject(s)
Mutation/genetics , Sandhoff Disease/genetics , Sandhoff Disease/pathology , Child, Preschool , Female , Hexosaminidase A/genetics , Humans , Infant , Iran , Male , beta-Hexosaminidase beta Chain/genetics
20.
Clin Neurol Neurosurg ; 167: 43-53, 2018 04.
Article in English | MEDLINE | ID: mdl-29448188

ABSTRACT

OBJECTIVES: Gangliosidosis is an inherited metabolic disorder causing neurodegeneration and motor regression. Preventive diagnosis is the first choice for the affected families due to lack of straightforward therapy. Genetic studies could confirm the diagnosis and help families for carrier screening and prenatal diagnosis. An update of HEXB gene variants concerning genotype, phenotype and in silico analysis are presented. PATIENTS AND METHODS: Panel based next generation sequencing and direct sequencing of four cases were performed to confirm the clinical diagnosis and for reproductive planning. Bioinformatic analyses of the HEXB mutation database were also performed. RESULTS: Direct sequencing of HEXA and HEXB genes showed recurrent homozygous variants at c.509G>A (p.Arg170Gln) and c.850C>T (p.Arg284Ter), respectively. A novel variant at c.416T>A (p.Leu139Gln) was identified in the GLB1 gene. Panel based next generation sequencing was performed for an undiagnosed patient which showed a novel mutation at c.1602C>A (p.Cys534Ter) of HEXB gene. Bioinformatic analysis of the HEXB mutation database showed 97% consistency of in silico genotype analysis with the phenotype. Bioinformatic analysis of the novel variants predicted to be disease causing. In silico structural and functional analysis of the novel variants showed structural effect of HEXB and functional effect of GLB1 variants which would provide fast analysis of novel variants. CONCLUSIONS: Panel based studies could be performed for overlapping symptomatic patients. Consequently, genetic testing would help affected families for patients' management, carrier detection, and family planning's.


Subject(s)
Gangliosidoses/genetics , Genotype , Mutation/genetics , beta-Hexosaminidase beta Chain/genetics , Diagnosis, Differential , Female , Gangliosidoses/diagnosis , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...