Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.344
Filter
1.
Med Sci Monit ; 30: e943596, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831571

ABSTRACT

BACKGROUND In China, the most prevalent type of CRKP is ST11, but the high-risk clone ST15 has grown in popularity in recent years, posing a serious public health risk. Therefore, we investigated the molecular prevalence characteristics of ST15 CRKP detected in a tertiary hospital in Ningbo to understand the current potential regional risk of ST15 CRKP outbreak. MATERIAL AND METHODS We collected and evaluated 18 non-duplicated CRKP strains of ST15 type for antibiotic resistance. Their integrons, virulence genes, and resistance genes were identified using polymerase chain reaction (PCR), and their homology was determined using MALDI-TOF MS. RESULTS The predominant serotype of 18 ST15 CRKP strains was K5. ST15 CRKP exhibited the lowest antimicrobial resistance to Cefoperazone/sulbactam (11.1%), followed by trimethoprim/sulfamethoxazole (22.2%). Resistance gene testing revealed that 14 out of 18 ST15 CRKP strains (77.8%) carried Klebsiella pneumoniae carbapenemase 2 (KPC-2), whereas all ST15 CRKP integrons were of the intI1 type. Furthermore, virulence gene testing revealed that all 18 ST15 CRKP strains carried ybtS, kfu, irp-1, and fyuA genes, followed by the irp-2 gene (17 strains) and entB (16 strains). The homology analysis report showed that 2 clusters had closer affinity, which was mainly concentrated in classes C and D. CONCLUSIONS The ST15 CRKP antibiotic resistance rates demonstrate clear geographical differences in Ningbo. Additionally, some strains carried highly virulent genes, indicating a possible evolution towards carbapenem-resistant highly virulent strains. To reduce the spread of ST15 CRKP, we must rationalize the clinical use of antibiotics and strengthen resistance monitoring to control nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Prevalence , Integrons/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects
2.
PLoS One ; 19(6): e0304599, 2024.
Article in English | MEDLINE | ID: mdl-38829840

ABSTRACT

Extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) is an emerging pathogen of high concern given its resistance to extended-spectrum cephalosporins. Broiler chicken, which is the number one consumed meat in the United States and worldwide, can be a reservoir of ESBL E. coli. Backyard poultry ownership is on the rise in the United States, yet there is little research investigating prevalence of ESBL E. coli in this setting. This study aims to identify the prevalence and antimicrobial resistance profiles (phenotypically and genotypically) of ESBL E. coli in some backyard and commercial broiler farms in the U.S. For this study ten backyard and ten commercial farms were visited at three time-points across flock production. Fecal (n = 10), litter/compost (n = 5), soil (n = 5), and swabs of feeders and waterers (n = 6) were collected at each visit and processed for E. coli. Assessment of ESBL phenotype was determined through using disk diffusion with 3rd generation cephalosporins, cefotaxime and ceftazidime, and that with clavulanic acid. Broth microdilution and whole genome sequencing were used to investigate both phenotypic and genotypic resistance profiles, respectively. ESBL E. coli was more prevalent in backyard farms with 12.95% of samples testing positive whereas 0.77% of commercial farm samples were positive. All isolates contained a blaCTX-M gene, the dominant variant being blaCTX-M-1, and its presence was entirely due to plasmids. Our study confirms concerns of growing resistance to fourth generation cephalosporin, cefepime, as roughly half (51.4%) of all isolates were found to be susceptible dose-dependent and few were resistant. Resistance to non-beta lactams, gentamicin and ciprofloxacin, was also detected in our samples. Our study identifies prevalence of blaCTX-M type ESBL E. coli in U.S. backyard broiler farms, emphasizing the need for interventions for food and production safety.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Plasmids , beta-Lactamases , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Chickens/microbiology , United States/epidemiology , Plasmids/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Prevalence , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/epidemiology , Microbial Sensitivity Tests , Feces/microbiology , Escherichia coli Proteins/genetics , Farms
3.
Nat Commun ; 15(1): 4731, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830889

ABSTRACT

Major antibiotic groups are losing effectiveness due to the uncontrollable spread of antimicrobial resistance (AMR) genes. Among these, ß-lactam resistance genes -encoding ß-lactamases- stand as the most common resistance mechanism in Enterobacterales due to their frequent association with mobile genetic elements. In this context, novel approaches that counter mobile AMR are urgently needed. Collateral sensitivity (CS) occurs when the acquisition of resistance to one antibiotic increases susceptibility to another antibiotic and can be exploited to eliminate AMR selectively. However, most CS networks described so far emerge as a consequence of chromosomal mutations and cannot be leveraged to tackle mobile AMR. Here, we dissect the CS response elicited by the acquisition of a prevalent antibiotic resistance plasmid to reveal that the expression of the ß-lactamase gene blaOXA-48 induces CS to colistin and azithromycin. We next show that other clinically relevant mobile ß-lactamases produce similar CS responses in multiple, phylogenetically unrelated E. coli strains. Finally, by combining experiments with surveillance data comprising thousands of antibiotic susceptibility tests, we show that ß-lactamase-induced CS is pervasive within Enterobacterales. These results highlight that the physiological side-effects of ß-lactamases can be leveraged therapeutically, paving the way for the rational design of specific therapies to block mobile AMR or at least counteract their effects.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Drug Collateral Sensitivity/genetics , Plasmids/genetics , Azithromycin/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactam Resistance/genetics
4.
Curr Microbiol ; 81(7): 206, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831051

ABSTRACT

The presence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in fresh fruits and vegetables is a growing public health concern. The primary objective of this study was to investigate the relationship between biofilm formation and extended-spectrum ß-lactamase (ESBL) production in K. pneumoniae strains obtained from fresh fruits and vegetables. Out of 120 samples analysed, 94 samples (78%) were found to be positive for K. pneumoniae. Among the K. pneumoniae strains isolated, 74.5% were from vegetables, whereas the remaining (25.5%) were from fresh fruits. K. pneumoniae isolates were resistant to at least three different classes of antibiotics, with ceftazidime (90%) and cefotaxime (70%) showing the highest resistance rates. While the high occurrence of ESBL-producing and biofilm-forming K. pneumoniae strains were detected in vegetables (73.5% and 73.7%, respectively), considerable amounts of the same were also found in fresh fruits (26.5% and 26.3%, respectively). The results further showed a statistically significant (P < 0.001) association between biofilm formation and ESBL production in K. pneumoniae strains isolated from fresh fruits and vegetables. Furthermore, the majority (81%) of the ESBL-producing strains harbored the blaCTX-M gene, while a smaller proportion of strains carried the blaTEM gene (30%), blaSHV gene (11%) or blaOXA (8%). This study highlights the potential public health threat posed by K. pneumoniae in fresh fruits and vegetables and emphasizes the need for strict surveillance and control measures.


Subject(s)
Anti-Bacterial Agents , Biofilms , Fruit , Klebsiella pneumoniae , Microbial Sensitivity Tests , Vegetables , beta-Lactamases , Biofilms/growth & development , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Vegetables/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Fruit/microbiology , Anti-Bacterial Agents/pharmacology
5.
BMC Infect Dis ; 24(1): 554, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831286

ABSTRACT

BACKGROUND AND OBJECTIVE(S): CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS: A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum ß-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS: Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION: The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Prevalence , Male , Female , Middle Aged
6.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693798

ABSTRACT

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , Travel , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Anti-Bacterial Agents/pharmacology , Risk Factors , Animals , One Health , Plasmids , beta-Lactamases/genetics
7.
Front Cell Infect Microbiol ; 14: 1297312, 2024.
Article in English | MEDLINE | ID: mdl-38690325

ABSTRACT

Background: During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods: The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results: Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion: In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.


Subject(s)
COVID-19 , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , SARS-CoV-2 , beta-Lactamases , Humans , COVID-19/mortality , COVID-19/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Male , Female , Klebsiella Infections/mortality , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Middle Aged , Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Aged, 80 and over
8.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38718038

ABSTRACT

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Subject(s)
Carbapenems , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenems/pharmacology , Humans , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Small Untranslated/genetics , RNA, Bacterial/genetics , Microbial Sensitivity Tests
9.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711319

ABSTRACT

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Subject(s)
Blood Culture , Multiplex Polymerase Chain Reaction , Multiplex Polymerase Chain Reaction/methods , Humans , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics , Enterococcus faecium/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Bacteremia/microbiology , Bacteremia/diagnosis
10.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712634

ABSTRACT

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Plasmids , Porins , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Porins/genetics , Porins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Carbapenems/pharmacology , Meropenem/pharmacology , Mutation , Evolution, Molecular , Conjugation, Genetic , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Whole Genome Sequencing , Gene Dosage , beta-Lactamases/genetics
11.
BMC Microbiol ; 24(1): 174, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769479

ABSTRACT

BACKGROUND: Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS: This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 µg/mL), while broth microdilution identified 48 (MIC = 32-128 µg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION: The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Colistin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , India , beta-Lactamases/genetics , Plasmids/genetics
12.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702700

ABSTRACT

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Subject(s)
Anti-Bacterial Agents , Cat Diseases , Dog Diseases , Enterobacteriaceae Infections , beta-Lactamases , Animals , Cats , Dogs , Cat Diseases/microbiology , Cat Diseases/epidemiology , beta-Lactamases/genetics , Argentina/epidemiology , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Dog Diseases/microbiology , Dog Diseases/epidemiology , Microbial Sensitivity Tests , Pets , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Enterobacteriaceae/enzymology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology
13.
Curr Microbiol ; 81(7): 177, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758473

ABSTRACT

The purpose of this study was to determine if orangutans (Pongo spp.) living in captivity at a zoo in Wisconsin were colonized with antimicrobial-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to their resistant phenotypes. We hypothesize that since antimicrobial-resistant bacteria are so prevalent within humans, the animals could also be carriers of such strains given the daily contact between the animals and the zoo staff that care for them. To test this theory, fecal samples from two orangutans were examined for resistant bacteria by inoculation on HardyCHROM™ ESBL and HardyCHROM™ CRE agars. Isolates were identified using MALDI-TOF mass spectrometry and antimicrobial susceptibility testing was performed using a Microscan autoSCAN-4 System. An isolate was selected for additional characterization, including whole genome sequencing (WGS). Using the Type (Strain) Genome Server (TYGS) the bacterium was identified as Escherichia coli. The sequence type identified was (ST/phylogenetic group/ß-lactamase): ST6448/B1/CTX-M-55.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Feces , beta-Lactamases , Animals , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Animals, Zoo/microbiology , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Wisconsin , Escherichia coli Proteins/genetics , Genome, Bacterial
14.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Article in English | MEDLINE | ID: mdl-38741889

ABSTRACT

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , Gene Transfer, Horizontal , Plasmids , beta-Lactamases , Escherichia coli/genetics , Escherichia coli/drug effects , Plasmids/genetics , Humans , Escherichia coli Infections/microbiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Conjugation, Genetic , Escherichia coli Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Latin America , Drug Resistance, Bacterial/genetics
15.
Sci Rep ; 14(1): 11260, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38755240

ABSTRACT

Β-lactamases-producing Escherichia coli are a widely distributed source of antimicrobial resistance (AMR), for animals and humans. Little is known about the sensitivity profile and genetic characteristics of E. coli strains isolated from domestic cats. We report a cross-sectional study that evaluated E. coli strains isolated from domestic cats in Panama. For this study the following antibiotics were analyzed: ampicillin, amoxicillin-clavulanate cefepime, cefotaxime, cefoxitin, ceftazidime, aztreonam, imipenem, gentamicin, kanamycin, streptomycin, tetracycline, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, and chloramphenicol. The data obtained were classified as resistant, intermediate, or sensitive. MDR strains were established when the strain presented resistance to at least one antibiotic from three or more antimicrobial classes. Forty-eight E. coli isolates were obtained, of which 80% presented resistance to at least one of the antibiotics analyzed, while only 20% were sensitive to all (p = 0.0001). The most common resistance was to gentamicin (58%). Twenty-nine percent were identified as multidrug-resistant isolates and 4% with extended spectrum beta-lactamase phenotype. The genes blaTEM (39%), blaMOX(16%), blaACC (16%) and blaEBC (8%) were detected. Plasmid-mediated resistance qnrB (25%) and qnrA (13%) are reported. The most frequent sequence types (STs) being ST399 and we reported 5 new STs. Our results suggest that in intestinal strains of E. coli isolated from domestic cats there is a high frequency of AMR.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli , Microbial Sensitivity Tests , Animals , Cats/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Phenotype , beta-Lactamases/genetics , Cross-Sectional Studies , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Genetic Variation
16.
PLoS One ; 19(5): e0303753, 2024.
Article in English | MEDLINE | ID: mdl-38758757

ABSTRACT

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacteriaceae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Aztreonam/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/genetics , Humans , Drug Synergism , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy
17.
Nat Commun ; 15(1): 4093, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750030

ABSTRACT

Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.


Subject(s)
Escherichia coli , Plasmids , beta-Lactamases , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Chromosomes, Bacterial/genetics
18.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728939

ABSTRACT

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Escherichia coli , Feces , Multilocus Sequence Typing , Ursidae , beta-Lactamases , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , beta-Lactamases/genetics , Ursidae/microbiology , China , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Bacterial Proteins/genetics , Ecosystem , Phylogeny , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics
19.
BMC Genomics ; 25(1): 508, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778284

ABSTRACT

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Subject(s)
Gram-Negative Bacteria , Phylogeny , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactamases/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , beta-Lactams/pharmacology , beta-Lactams/metabolism , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , beta-Lactam Resistance/genetics , beta Lactam Antibiotics
20.
PLoS One ; 19(5): e0301531, 2024.
Article in English | MEDLINE | ID: mdl-38787855

ABSTRACT

Wastewater discharge into the environment in resource-poor countries poses a threat to public health. Studies in this area within these countries are limited, and the use of high-throughput whole-genome sequencing technologies is lacking. Therefore, understanding of environmental impacts is inadequate. The present study investigated the antibiotic resistance profiles and diversity of beta-lactamases in Escherichia coli strains isolated from environmental water sources in Accra, Ghana. Microbiological analyses were conducted on wastewater samples from three hospitals, a sewage and wastewater treatment plant, and water samples from two urban surface water bodies. Confirmed isolates (N = 57) were selected for phenotypic antibiotic resistance profiles. Multi-drug-resistant isolates (n = 25) were genome sequenced using Illumina MiSeq sequencing technology and screened for sequence types, antibiotic resistance, virulence and beta-lactamase genes, and mobile genetic elements. Isolates were frequently resistant to ampicillin (63%), meropenem (47%), azithromycin (46%), and sulfamethoxazole-trimethoprim (42%). Twenty different sequence types (STs) were identified, including clinically relevant ones such as ST167 and ST21. Five isolates were assigned to novel STs: ST14531 (n = 2), ST14536, ST14537, and ST14538. The isolates belonged to phylogroups A (52%), B1 (44%), and B2 (4%) and carried ß-lactamase (TEM-1B, TEM-1C, CTX-M-15, and blaDHA-1) and carbapenemase (OXA-1, OXA-181) resistance genes. Dominant plasmid replicons included Col440I (10.2%) and IncFIB (AP001918) (6.8%). Polluted urban environments in Accra are reservoirs for antibiotic-resistant bacteria, posing a substantial public health risk. The findings underscore the need for targeted public health interventions to mitigate the spread of antibiotic-resistant bacteria and protect public health.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli , Wastewater , beta-Lactamases , Ghana , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Humans , Wastewater/microbiology , Public Health , Anti-Bacterial Agents/pharmacology , Water Microbiology , Microbial Sensitivity Tests , Genomics , Whole Genome Sequencing , Phylogeny , Sewage/microbiology , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...