Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.032
Filter
1.
Elife ; 122024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833384

ABSTRACT

The term 'druggability' describes the molecular properties of drugs or targets in pharmacological interventions and is commonly used in work involving drug development for clinical applications. There are no current analogues for this notion that quantify the drug-target interaction with respect to a given target variant's sensitivity across a breadth of drugs in a panel, or a given drug's range of effectiveness across alleles of a target protein. Using data from low-dimensional empirical fitness landscapes composed of 16 ß-lactamase alleles and 7 ß-lactam drugs, we introduce two metrics that capture (i) the average susceptibility of an allelic variant of a drug target to any available drug in a given panel ('variant vulnerability'), and (ii) the average applicability of a drug (or mixture) across allelic variants of a drug target ('drug applicability'). Finally, we (iii) disentangle the quality and magnitude of interactions between loci in the drug target and the seven drug environments in terms of their mutation by mutation by environment (G x G x E) interactions, offering mechanistic insight into the variant variability and drug applicability metrics. Summarizing, we propose that our framework can be applied to other datasets and pathogen-drug systems to understand which pathogen variants in a clinical setting are the most concerning (low variant vulnerability), and which drugs in a panel are most likely to be effective in an infection defined by standing genetic variation in the pathogen drug target (high drug applicability).


Subject(s)
Anti-Bacterial Agents , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Genetic Fitness , Mutation , beta-Lactams/pharmacology , Alleles , Evolution, Molecular
2.
JAMA Netw Open ; 7(5): e2412313, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38758551

ABSTRACT

Importance: ß-lactam (BL) allergies are the most common drug allergy worldwide, but most are reported in error. BL allergies are also well-established risk factors for adverse drug events and antibiotic-resistant infections during inpatient health care encounters, but the understanding of the long-term outcomes of patients with BL allergies remains limited. Objective: To evaluate the long-term clinical outcomes of patients with BL allergies. Design, Setting, and Participants: This longitudinal retrospective cohort study was conducted at a single regional health care system in western Pennsylvania. Electronic health records were analyzed for patients who had an index encounter with a diagnosis of sepsis, pneumonia, or urinary tract infection between 2007 and 2008. Patients were followed-up until death or the end of 2018. Data analysis was performed from January 2022 to January 2024. Exposure: The presence of any BL class antibiotic in the allergy section of a patient's electronic health record, evaluated at the earliest occurring observed health care encounter. Main Outcomes and Measures: The primary outcome was all-cause mortality, derived from the Social Security Death Index. Secondary outcomes were defined using laboratory and microbiology results and included infection with methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, or vancomycin-resistant Enterococcus (VRE) and severity and occurrence of acute kidney injury (AKI). Generalized estimating equations with a patient-level panel variable and time exposure offset were used to evaluate the odds of occurrence of each outcome between allergy groups. Results: A total of 20 092 patients (mean [SD] age, 62.9 [19.7] years; 12 231 female [60.9%]), of whom 4211 (21.0%) had BL documented allergy and 15 881 (79.0%) did not, met the inclusion criteria. A total of 3513 patients (17.5%) were Black, 15 358 (76.4%) were White, and 1221 (6.0%) were another race. Using generalized estimating equations, documented BL allergies were not significantly associated with the odds of mortality (odds ratio [OR], 1.02; 95% CI, 0.96-1.09). BL allergies were associated with increased odds of MRSA infection (OR, 1.44; 95% CI, 1.36-1.53), VRE infection (OR, 1.18; 95% CI, 1.05-1.32), and the pooled rate of the 3 evaluated antibiotic-resistant infections (OR, 1.33; 95% CI, 1.30-1.36) but were not associated with C difficile infection (OR, 1.04; 95% CI, 0.94-1.16), stage 2 and 3 AKI (OR, 1.02; 95% CI, 0.96-1.10), or stage 3 AKI (OR, 1.06; 95% CI, 0.98-1.14). Conclusions and Relevance: Documented BL allergies were not associated with the long-term odds of mortality but were associated with antibiotic-resistant infections. Health systems should emphasize accurate allergy documentation and reduce unnecessary BL avoidance.


Subject(s)
Anti-Bacterial Agents , Drug Hypersensitivity , beta-Lactams , Humans , Drug Hypersensitivity/epidemiology , Female , Male , beta-Lactams/adverse effects , beta-Lactams/therapeutic use , Retrospective Studies , Middle Aged , Aged , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Longitudinal Studies , Pennsylvania/epidemiology , Adult , Urinary Tract Infections/epidemiology , Risk Factors , Electronic Health Records/statistics & numerical data
3.
BMC Genomics ; 25(1): 508, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778284

ABSTRACT

BACKGROUND: Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.


Subject(s)
Gram-Negative Bacteria , Phylogeny , beta-Lactamases , beta-Lactamases/metabolism , beta-Lactamases/genetics , beta-Lactamases/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , beta-Lactams/pharmacology , beta-Lactams/metabolism , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , beta-Lactam Resistance/genetics , beta Lactam Antibiotics
4.
J Chem Inf Model ; 64(10): 4021-4030, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38695490

ABSTRACT

Machine learning, and representation learning in particular, has the potential to facilitate drug discovery by screening a large chemical space in silico. A successful approach for representing molecules is to treat them as graphs and utilize graph neural networks. One of the key limitations of such methods is the necessity to represent compounds with different numbers of atoms, which requires aggregating the atom's information. Common aggregation operators, such as averaging, result in a loss of information at the atom level. In this work, we propose a novel aggregating approach where each atom is weighted nonlinearly using the Boltzmann distribution with a hyperparameter analogous to temperature. We show that using this weighted aggregation improves the ability of the gold standard message-passing neural network to predict antibiotic activity. Moreover, by changing the temperature hyperparameter, our approach can reveal the atoms that are important for activity prediction in a smooth and consistent way, thus providing a novel regulated attention mechanism for graph neural networks. We further validate our method by showing that it recapitulates the functional group in ß-lactam antibiotics. The ability of our approach to rank the atoms' importance for a desired function can be used within any graph neural network to provide interpretability of the results and predictions at the node level.


Subject(s)
Anti-Bacterial Agents , Drug Discovery , Neural Networks, Computer , Drug Discovery/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Machine Learning , beta-Lactams/chemistry
5.
Ann Intern Med ; 177(5): JC52, 2024 May.
Article in English | MEDLINE | ID: mdl-38710092

ABSTRACT

SOURCE CITATION: López-Cortés LE, Delgado-Valverde M, Moreno-Mellado E, et al; SIMPLIFY study group. Efficacy and safety of a structured de-escalation from antipseudomonal ß-lactams in bloodstream infections due to Enterobacterales (SIMPLIFY): an open-label, multicentre, randomised trial. Lancet Infect Dis. 2024;24:375-385. 38215770.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Enterobacteriaceae Infections , beta-Lactams , Humans , Bacteremia/drug therapy , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , beta-Lactams/therapeutic use , Enterobacteriaceae/drug effects , Male , Female , Middle Aged , Aged , Drug Administration Schedule
6.
J Med Chem ; 67(8): 6705-6725, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38596897

ABSTRACT

Cefiderocol is the first approved catechol-conjugated cephalosporin against multidrug-resistant Gram-negative bacteria, while its application was limited by poor chemical stability associated with the pyrrolidinium linker, moderate potency against Klebsiella pneumoniae and Acinetobacter baumannii, intricate procedures for salt preparation, and potential hypersensitivity. To address these issues, a series of novel catechol-conjugated derivatives were designed, synthesized, and evaluated. Extensive structure-activity relationships and structure-metabolism relationships (SMR) were conducted, leading to the discovery of a promising compound 86b (Code no. YFJ-36) with a new thioether linker. 86b exhibited superior and broad-spectrum in vitro antibacterial activity, especially against A. baumannii and K. pneumoniae, compared with cefiderocol. Potent in vivo efficacy was observed in a murine systemic infection model. Furthermore, the physicochemical stability of 86b in fluid medium at pH 6-8 was enhanced. 86b also reduced potential the risk of allergy owing to the quaternary ammonium linker. The improved properties of 86b supported its further research and development.


Subject(s)
Anti-Bacterial Agents , Catechols , Drug Design , Gram-Negative Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Catechols/chemistry , Catechols/pharmacology , Catechols/chemical synthesis , Animals , Structure-Activity Relationship , Mice , Gram-Negative Bacteria/drug effects , Klebsiella pneumoniae/drug effects , Acinetobacter baumannii/drug effects , beta-Lactams/pharmacology , beta-Lactams/chemical synthesis , beta-Lactams/chemistry , Cephalosporins/pharmacology , Cephalosporins/chemical synthesis , Cephalosporins/chemistry , Drug Discovery
7.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674148

ABSTRACT

It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.


Subject(s)
Anti-Bacterial Agents , Microbiota , Urinary Bladder Neoplasms , beta-Defensins , Humans , beta-Defensins/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Microbiota/drug effects , Male , Female , Middle Aged , Aged , Fosfomycin/therapeutic use , Fosfomycin/pharmacology , Fluoroquinolones/therapeutic use , Fluoroquinolones/pharmacology , beta-Lactams/therapeutic use , beta-Lactams/pharmacology
8.
Microbiology (Reading) ; 170(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38661713

ABSTRACT

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Microbial Sensitivity Tests , Phylogeny , Plasmids , Virulence Factors , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Virulence/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/pathogenicity , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/classification , Virulence Factors/genetics , Humans , Enterobacteriaceae Infections/microbiology , Phenotype , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , beta-Lactams/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Food Microbiology
9.
Crit Care ; 28(1): 123, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627763

ABSTRACT

BACKGROUND: To perform a systematic review with meta-analysis with the dual intent of assessing the impact of attaining aggressive vs. conservative beta-lactams PK/PD target on the clinical efficacy for treating Gram-negative infections in critical patients, and of identifying predictive factors of failure in attaining aggressive PK/PD targets. METHODS: Two authors independently searched PubMed-MEDLINE and Scopus database from inception to 23rd December 2023, to retrieve studies comparing the impact of attaining aggressive vs. conservative PK/PD targets on clinical efficacy of beta-lactams. Independent predictive factors of failure in attaining aggressive PK/PD targets were also assessed. Aggressive PK/PD target was considered a100%fT>4xMIC, and clinical cure rate was selected as primary outcome. Meta-analysis was performed by pooling odds ratios (ORs) extrapolated from studies providing adjustment for confounders using a random-effects model with inverse variance method. RESULTS: A total of 20,364 articles were screened, and 21 observational studies were included in the meta-analysis (N = 4833; 2193 aggressive vs. 2640 conservative PK/PD target). Attaining aggressive PK/PD target was significantly associated with higher clinical cure rate (OR 1.69; 95% CI 1.15-2.49) and lower risk of beta-lactam resistance development (OR 0.06; 95% CI 0.01-0.29). Male gender, body mass index > 30 kg/m2, augmented renal clearance and MIC above the clinical breakpoint emerged as significant independent predictors of failure in attaining aggressive PK/PD targets, whereas prolonged/continuous infusion administration of beta-lactams resulted as protective factor. The risk of bias was moderate in 19 studies and severe in the other 2. CONCLUSIONS: Attaining aggressive beta-lactams PK/PD targets provided significant clinical benefits in critical patients. Our analysis could be useful to stratify patients at high-risk of failure in attaining aggressive PK/PD targets.


Subject(s)
Anti-Bacterial Agents , beta-Lactams , Humans , Male , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Critical Illness/therapy , Treatment Outcome , Infusions, Intravenous
10.
Infect Dis Clin North Am ; 38(2): 295-310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594140

ABSTRACT

In this study, the authors review antibiotic treatment options for both acute uncomplicated and complicated urinary tract infection (UTI). In addition, they also review regimens used in the setting of drug-resistant pathogens including vancomycin resistant Enterococcus, extended spectrum beta-lactamase (ESBL) producing Enterobacterals, carbapenem-resistant Enterobacterals and carbapenem-resistant Pseudomonas, which are encountered with increasing frequency.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , beta-Lactams , Humans , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Anti-Bacterial Agents/therapeutic use , beta-Lactams/therapeutic use , Drug Therapy, Combination
11.
Bioorg Chem ; 147: 107337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626491

ABSTRACT

A convenient methodology for C-4 indole-ß-lactam hybrids with chloro, sulphur and seleno substitutions through dual site reactivity of indole-3-Schiff bases towards ketenes has been developed. The reaction proceeded in a stereospecific manner with the exclusive formation of trans-ß-lactams assigned with respect to C3-H and C4-H. The synthesized novel ß-lactams have been characterized with the help of elemental analysis (CHNS) and spectroscopic techniques viz.1H NMR, 13C NMR, DEPT 135, HSQC and IR. The trans configuration was further estabilished based on X-ray crystallographic data. Examination of antibacterial properties unveiled that only derivatives 5a and 5b, featuring chloro substitution, exhibited potent activities, underscoring the emergence of the recently coined term "magic chloro effect". Molecular docking analysis provided additional support for the observed in vitro antibacterial activities of compounds 5a-b.


Subject(s)
Anti-Bacterial Agents , Indoles , Microbial Sensitivity Tests , Molecular Docking Simulation , Schiff Bases , beta-Lactams , Schiff Bases/chemistry , Schiff Bases/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , beta-Lactams/chemistry , beta-Lactams/pharmacology , beta-Lactams/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Ketones/chemistry , Ketones/pharmacology , Ketones/chemical synthesis , Ethylenes/chemistry , Ethylenes/pharmacology , Stereoisomerism , Selenium/chemistry , Selenium/pharmacology , Sulfur/chemistry , Dose-Response Relationship, Drug
13.
J Antimicrob Chemother ; 79(6): 1337-1345, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38581308

ABSTRACT

OBJECTIVES: To assess risk factors for carbapenem-resistant Pseudomonas aeruginosa (CR) and extended-ß-lactam-resistant P. aeruginosa (EBR) infection/colonization, and to develop and compare tools for predicting isolation of CR and EBR from clinical cultures. METHODS: This retrospective study analysed hospitalized patients with positive P. aeruginosa cultures between 2015 and 2021. Two case-control analyses were performed to identify risk factors and develop scoring tools for distinguishing patients with CR versus carbapenem-susceptible (CS) P. aeruginosa and EBR versus CS P. aeruginosa. The performance of institutionally derived scores, externally derived scores and the presence/absence of key risk factors to predict CR and EBR were then compared. RESULTS: A total of 2379 patients were included. Of these, 8.3% had a positive culture for CR, 5.0% for EBR and 86.7% for CS P. aeruginosa. There was substantial overlap in risk factors for CR and EBR. Institutional risk scores demonstrated modestly higher area under the ROC curve values than external scores for predicting CR (0.67 versus 0.58) and EBR (0.76 versus 0.70). Assessing the presence/absence of ≥1 of the two strongest predictors (prior carbapenem use or CR isolation within 90 days) was slightly inferior to scoring tools for predicting CR, and comparable for predicting EBR. CONCLUSIONS: Clinicians concerned about CR in P. aeruginosa should consider the likelihood of EBR when making treatment decisions. A simple approach of assessing recent history of CR isolation or carbapenem usage performed similarly to more complex scoring tools and offers a more pragmatic way of identifying patients who require coverage for resistant P. aeruginosa.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactam Resistance , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Retrospective Studies , Carbapenems/pharmacology , Male , Female , Middle Aged , Risk Factors , Anti-Bacterial Agents/pharmacology , Aged , Case-Control Studies , Adult , Microbial Sensitivity Tests , beta-Lactams/pharmacology
14.
Sci Rep ; 14(1): 7793, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565898

ABSTRACT

An estimated 70% of critically ill patients receive antibiotics, most frequently beta-lactams. The pharmacokinetic properties of these substances in this patient population are poorly predictable. Therapeutic drug monitoring (TDM) is helpful in making personalized decisions in this field, but its overall impact as a clinical decision-supporting tool is debated. We aimed to evaluate the clinical implications of adjusting beta-lactam dosages based on TDM in the critically ill population by performing a systematic review and meta-analysis of available investigations. Randomized controlled trials and observational studies were retrieved by searching three major databases. The intervention group received TDM-guided beta-lactam treatment, that is, at least one dose reconsideration based on the result of the measurement of drug concentrations, while TDM-unadjusted dosing was employed in the comparison group. The outcomes were evaluated using forest plots with random-effects modeling and subgroup analysis. Eight eligible studies were identified, including 1044 patients in total. TDM-guided beta-lactam treatment was associated with improved clinical cure from infection [odds ratio (OR): 2.22 (95% confidence interval (CI): 1.78-2.76)] and microbiological eradication [OR: 1.72 (CI: 1.05-2.80)], as well as a lower probability of treatment failure [OR: 0.47 (CI: 0.36-0.62)], but the heterogeneity of studies was remarkably high, especially in terms of mortality (70%). The risk of bias was moderate. While the TDM-guided administration of beta-lactams to critically ill patients has a favorable impact, standardized study designs and larger sample sizes are required for developing evidence-based protocols in this field.


Subject(s)
Critical Illness , beta-Lactams , Adult , Humans , Critical Illness/therapy , Drug Monitoring/methods , Randomized Controlled Trials as Topic , Anti-Bacterial Agents
15.
Microbiol Spectr ; 12(6): e0322723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38647286

ABSTRACT

The triterpenoid saponins, ginsenosides, are the major bioactive compound of red ginseng and can exert various physiological activities. In the present study, we examined whether red ginseng extract (RGE) exerts antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). RGE had no bactericidal activity, at least in the range of dissolvable concentration. However, RGE reduced 0.03-0.25-fold the minimum inhibitory concentration (MIC) values of ß-lactam antibiotics (oxacillin, ampicillin, carbenicillin, and cefazolin) and aminoglycoside antibiotics (kanamycin and gentamicin) against the two laboratory strains of MRSA. Moreover, the fractional inhibitory concentration index indicated the synergistic activity of RGE with each of the antibiotics. RGE also increased the kanamycin sensitivity of 15 MRSA strains isolated from human volunteers and increased the ampicillin sensitivity of five MRSA strains isolated from dairy cows diagnosed with bovine mastitis. In contrast, RGE did not alter the MIC values of fosfomycin, tetracycline, and erythromycin, suggesting that RGE acts selectively. In contrast, Triton X-100, which was reported to reduce the MIC value of ß-lactam antibiotics to MRSA by increasing membrane permeability, reduced the MIC values of fosfomycin and tetracycline. These results indicate that RGE increases the bactericidal effect of antibiotics via a mechanism different from that used by Triton X-100. We found that ginsenoside Rg3 (Rg3), a component of RGE, was an essential compound that exhibits synergy activity with antibiotics. Furthermore, the non-natural compound K, which contains a common protopanaxadiol aglycon moiety with Rg3, also showed synergistic activity with antibiotics. Thus, Rg3 and compound K are potentially new antibiotic adjuvants against MRSA.IMPORTANCEMethicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant organism that is prevalent worldwide. Therefore, the research and development of new agents against MRSA are required. We first found that ginsenoside Rg3 (Rg3) in red ginseng, made from the roots of Panax ginseng C. A. Meyer, increased the sensitivity of ß-lactam antibiotics and aminoglycoside antibiotics to MRSA. Furthermore, we identified that compound K, an unnatural ginsenoside analog, also increased the sensitivity of antibiotics to MRSA, similar to Rg3. By contrast, neither Rg3 nor compound K increased the sensitivity of fosfomycin, tetracycline, and erythromycin to MRSA, suggesting that these act selectively. In the present study, the natural compound Rg3 and its structural isomer, compound K, are potentially new antibiotic adjuvants against MRSA. Currently, multiple antibiotics are used to treat MRSA, but the use of these adjuvants is expected to enable the treatment of MRSA with a single antibiotic and low concentrations of antibiotics.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Drug Synergism , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Panax , Staphylococcal Infections , beta-Lactams , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Panax/chemistry , Humans , Animals , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Cattle , Aminoglycosides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Saponins/pharmacology , Ginsenosides/pharmacology , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy
16.
ACS Infect Dis ; 10(4): 1267-1285, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38442370

ABSTRACT

The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Quinolines , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Drug Synergism , Anti-Infective Agents/pharmacology , Quinolines/pharmacology
17.
ACS Infect Dis ; 10(4): 1298-1311, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38446051

ABSTRACT

Effective treatment of gonorrhea is threatened by the increasing prevalence of Neisseria gonorrhoeae strains resistant to the extended-spectrum cephalosporins (ESCs). Recently, we demonstrated the promise of the third-generation cephalosporin cefoperazone as an antigonococcal agent due to its rapid second-order rate of acylation against penicillin-binding protein 2 (PBP2) from the ESC-resistant strain H041 and robust antimicrobial activity against H041. Noting the presence of a ureido moiety in cefoperazone, we evaluated a subset of structurally similar ureido ß-lactams, including piperacillin, azlocillin, and mezlocillin, for activity against PBP2 from H041 using biochemical and structural analyses. We found that the ureidopenicillin piperacillin has a second-order rate of acylation against PBP2 that is 12-fold higher than cefoperazone and 85-fold higher than ceftriaxone and a lower MIC against H041 than ceftriaxone. Surprisingly, the affinity of ureidopenicillins for PBP2 is minimal, indicating that their inhibitory potency is due to a higher rate of the acylation step of the reaction compared to cephalosporins. Enhanced acylation results from the combination of a penam scaffold with a 2,3-dioxopiperazine-containing R1 group. Crystal structures show that the ureido ß-lactams overcome the effects of resistance mutations present in PBP2 from H041 by eliciting conformational changes that are hindered when PBP2 interacts with the weaker inhibitor ceftriaxone. Overall, our results support the potential of piperacillin as a treatment for gonorrhea and provide a framework for the future design of ß-lactams with improved activity against ESC-resistant N. gonorrhoeae.


Subject(s)
Ceftriaxone , Gonorrhea , Humans , Ceftriaxone/metabolism , Ceftriaxone/pharmacology , Neisseria gonorrhoeae/genetics , Gonorrhea/drug therapy , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Cefoperazone/pharmacology , Cephalosporins/pharmacology , Cephalosporins/metabolism , Piperacillin/metabolism , Piperacillin/pharmacology , beta-Lactams/pharmacology
18.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543020

ABSTRACT

Terminalia canescens DC. Radlk. (family: Combretaceae) is native to northern Australia. Species of the genus Terminalia are widely used as traditional medicines to treat diverse ailments, including bacterial infections. However, we were unable to find any studies that had examined the antimicrobial activity of T. canescens. In this study, T. canescens was screened against a panel of bacterial pathogens, including multi-antibiotic-resistant strains. Solvents with different polarities were used to extract different complements of phytochemicals from T. canescens leaves. Methanolic and aqueous extracts exhibited substantial antimicrobial activity against various pathogens, including those that are multidrug-resistant strains. When combined with some selected clinical antibiotics, some extracts potentiated the antibacterial inhibitory activity. This study identified two synergistic, eleven additive, eleven non-interactive and eight antagonistic interactions. The toxicities of the plant extracts were examined in the Artemia franciscana nauplii assay and were found to be non-toxic, except the aqueous extract, which showed toxicity. Metabolomic liquid chromatography-mass spectrometry (LC-MS) analyses highlighted and identified several flavonoids, including vitexin, quercetin, orientin and kaempferol, as well as the tannins ellagic acid and pyrogallol, which may contribute to the antibacterial activities observed herein. The possible mechanism of action of these extracts was further explored in this study.


Subject(s)
Anti-Bacterial Agents , Terminalia , Anti-Bacterial Agents/pharmacology , Terminalia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Bacteria , beta-Lactams , Microbial Sensitivity Tests
19.
J Am Chem Soc ; 146(11): 7708-7722, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457782

ABSTRACT

Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the ß-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic ß-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.


Subject(s)
Siderophores , beta-Lactams , Siderophores/pharmacology , beta-Lactams/pharmacology , Lactams , Anti-Bacterial Agents/pharmacology , Enterobactin/pharmacology , Enterobactin/metabolism , Gram-Negative Bacteria , Iron
20.
Pharmacoepidemiol Drug Saf ; 33(4): e5779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511244

ABSTRACT

PURPOSE: To characterize antibiotic utilization for outpatient community-acquired pneumonia (CAP) in the United States. METHODS: We conducted a cohort study among adults 18-64 years diagnosed with outpatient CAP and a same-day guideline-recommended oral antibiotic fill in the MarketScan® Commercial Database (2008-2019). We excluded patients coded for chronic lung disease or immunosuppressive disease; recent hospitalization or frequent healthcare exposure (e.g., home wound care, patients with cancer); recent antibiotics; or recent infection. We characterized utilization of broad-spectrum antibiotics (respiratory fluoroquinolone, ß-lactam + macrolide, ß-lactam + doxycycline) versus narrow-spectrum antibiotics (macrolide, doxycycline) overall and by patient- and provider-level characteristics. Per 2007 IDSA/ATS guidelines, we stratified analyses by otherwise healthy patients and patients with comorbidities (coded for diabetes; chronic heart, liver, or renal disease; etc.). RESULTS: Among 263 914 otherwise healthy CAP patients, 35% received broad-spectrum antibiotics (not recommended); among 37 161 CAP patients with comorbidities, 44% received broad-spectrum antibiotics (recommended). Ten-day antibiotic treatment durations were the most common for all antibiotic classes except macrolides. From 2008 to 2019, broad-spectrum antibiotic use substantially decreased from 45% to 19% in otherwise healthy patients (average annual percentage change [AAPC], -7.5% [95% CI -9.2%, -5.9%]), and from 55% to 29% in patients with comorbidities (AAPC, -5.8% [95% CI -8.8%, -2.6%]). In subgroup analyses, broad-spectrum antibiotic use varied by age, geographic region, provider specialty, and provider location. CONCLUSIONS: Real-world use of broad-spectrum antibiotics for outpatient CAP declined over time but remained common, irrespective of comorbidity status. Prolonged duration of therapy was common. Antimicrobial stewardship is needed to aid selection according to comorbidity status and to promote shorter courses.


Subject(s)
Community-Acquired Infections , Pneumonia , Adult , Humans , United States/epidemiology , Anti-Bacterial Agents/therapeutic use , Doxycycline , Cohort Studies , Outpatients , Pneumonia/drug therapy , Pneumonia/epidemiology , beta-Lactams , Macrolides/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...