Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Sci Adv ; 10(10): eadj3823, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446876

ABSTRACT

Mutations that perturb leptin-melanocortin signaling are known to cause hyperphagia and obesity, but energy expenditure has not been well studied outside rodents. We report on a common canine mutation in pro-opiomelanocortin (POMC), which prevents production of ß-melanocyte-stimulating hormone (ß-MSH) and ß-endorphin but not α-MSH; humans, similar to dogs, produce α-MSH and ß-MSH from the POMC propeptide, but rodents produce only α-MSH. We show that energy expenditure is markedly lower in affected dogs, which also have increased motivational salience in response to a food cue, indicating increased wanting or hunger. There was no difference in satiety at a modified ad libitum meal or in their hedonic response to food, nor disruption of adrenocorticotropic hormone (ACTH) or thyroid axes. In vitro, we show that ß-MSH signals comparably to α-MSH at melanocortin receptors. These data implicate ß-MSH and ß-endorphin as important in determining hunger and moderating energy expenditure and suggest that this role is independent of the presence of α-MSH.


Subject(s)
beta-Endorphin , beta-MSH , Humans , Dogs , Animals , beta-Endorphin/genetics , Basal Metabolism , Pro-Opiomelanocortin/genetics , Hunger , alpha-MSH/genetics
2.
Ann Neurol ; 95(4): 688-699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308537

ABSTRACT

OBJECTIVE: Based upon similarities between the urge to move and sensory discomfort of restless legs syndrome (RLS) and properties of melanocortin hormones, including their incitement of movement and hyperalgesia, we assessed plasma and cerebrospinal fluid (CSF) α-melanocyte-stimulating hormone (α-MSH) and ß-endorphin in RLS patients and controls. METHODS: Forty-two untreated moderate-to-severe RLS patients and 44 matched controls underwent venipuncture at 19:00, 20:30, and 22:00; 37 RLS and 36 controls had lumbar puncture at 21:30. CSF and plasma were analyzed for pro-opiomelanocortin (POMC), adrenocorticotropin hormone (ACTH), α-MSH, ß-MSH, and ß-endorphin by immunoassay. RLS severity was assessed by International RLS Study Group Severity Scale. RESULTS: RLS participants were 52.7 ± 12.0 years old, 61.9% were women, 21.4% had painful RLS, and RLS severity was 24.8 ± 9.0. Controls had similar age and sex. Plasma ACTH, α-MSH, and ß-endorphin were similar between groups. Plasma POMC was significantly greater in RLS than controls (17.0 ± 11.5 vs 12.7 ± 6.1fmol/ml, p = 0.048). CSF ACTH was similar between groups. CSF ß-MSH was significantly higher in painful than nonpainful RLS or controls (48.2 ± 24.8 vs 32.1 ± 14.8 vs 32.6 ± 15.2pg/ml, analysis of variance [ANOVA] p = 0.03). CSF α-MSH was higher in RLS than controls (34.2 ± 40.9 vs 20.3 ± 11.0pg/ml, p = 0.062). CSF ß-EDP was lowest in painful RLS, intermediate in nonpainful RLS, and highest in controls (8.0 ± 3.4 vs 10.8 ± 3.1 vs 12.3 ± 5.0pg/ml, ANOVA p = 0.049). The ratio of the sum of CSF α- and ß-MSH to CSF ß-endorphin was highest, intermediate, and lowest in painful RLS, nonpainful RLS, and controls (p = 0.007). INTERPRETATION: CSF ß-MSH is increased and CSF ß-endorphin decreased in RLS patients with painful symptoms. ANN NEUROL 2024;95:688-699.


Subject(s)
Endorphins , Neuropeptides , Restless Legs Syndrome , Humans , Female , Adult , Middle Aged , Male , Pro-Opiomelanocortin/analysis , alpha-MSH/analysis , beta-Endorphin/analysis , Melanocortins , beta-MSH , Adrenocorticotropic Hormone
3.
Gen Comp Endocrinol ; 330: 114149, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36336108

ABSTRACT

Melanocortin-3 receptor (MC3R) not only regulates energy homeostasis in animals, but also is an important regulator of inflammation. As one of the most widely farmed freshwater fish, common carp has attracted great interest for its feeding and inflammation regulation. In this study, we cloned the coding sequence (CDS) of common carp Mc3r (ccMc3r), examined its tissue expression profile, and investigated the function of this receptor in mediating downstream signaling pathways. The results showed that the CDS of ccMc3r was 975 bp, encoding a putative protein of 324 amino acids. Homology, phylogeny, and chromosomal synteny analyses revealed that ccMc3r is evolutionarily close to the orthologs of cyprinids. Quantitative real-time PCR (qPCR) indicated that ccMc3r was highly expressed in the brain and intestine. The luciferase reporter systems showed that four ligands, ACTH (1-24), α-MSH, ß-MSH, and NDP-MSH, were able to activate the cAMP and MAPK/ERK signaling pathways downstream of ccMc3r with different potencies. For the cAMP signaling pathway, ACTH (1-24) had the highest activation potency; while for the MAPK/ERK signaling pathway, ß-MSH had the greatest activation effect. In addition, we found that the four agonists were able to inhibit TNF-α-induced NF-κB signaling in approximately the same order of potency as cAMP signaling activation. This study may facilitate future studies on the role of Mc3r in common carp feed efficiency and immune regulation.


Subject(s)
Carps , Receptor, Melanocortin, Type 3 , Animals , Tissue Distribution , Receptor, Melanocortin, Type 3/genetics , Carps/genetics , beta-MSH , Cosyntropin , Cloning, Molecular
4.
Neurosci Lett ; 736: 135282, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32738351

ABSTRACT

Beta-melanocyte-stimulating hormone (ß-MSH), when centrally injected, induces anorexigenic effects in rodents and chickens but its mechanism remains unclear. Thus, the primary goal of this research was to elucidate the hypothalamic mechanism using chickens. Intracerebroventricular injection of 0.3, 1.0 and 3.0 nmol of ß-MSH decreased food intake for 540 min. Expression of hypothalamic mRNAs were affected by ß-MSH injection, including corticotrophin-releasing factor (CRF) and its receptor subtype 1 (CRFR1), mesotocin (MT) and its receptor (MTR), pro-opiomelanocortin, cocaine- and amphetamine-regulated transcript (CART), growth hormone secretagogue receptor (GHSR) and neuropeptide Y (NPY) receptor subtype 5 (NPYR5). Within the arcuate nucleus, expressions of NPY, agouti-related peptide, MT and MTR were increased by ß-MSH injection. ß-MSH-treated chicks had more CRF, CRFR1, CRF receptor subtype 2, GHSR, NPY receptor subtype 1 (NPYR1) and NPYR5 mRNA but lower levels of CART and ghrelin, in the paraventricular nucleus. Greater amounts of mRNA for MTR, GHSR, NPYR1 and NPYR5 and less CRF expression were observed in the ventromedial hypothalamus. In conclusion, central injection of ß-MSH potently reduced food intake and was associated with changes in mRNA expression of some anorexigenic factors in a hypothalamic nucleus-specific manner.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Eating/drug effects , Hypothalamus/drug effects , Oxytocin/analogs & derivatives , Receptors, Corticotropin-Releasing Hormone/metabolism , beta-MSH/pharmacology , Animals , Chickens , Hypothalamus/metabolism , Injections, Intraventricular , Oxytocin/metabolism
6.
Gene ; 741: 144541, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32165303

ABSTRACT

Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor with multiple functions in mammals. However, the functions of MC4R in fish have not been investigated extensively. The purpose of this study was to determine potential regulation of reproduction by the MC4R. We cloned the black rockfish MC4R and analyzed its tissue distribution and function. The results showed that black rockfish mc4r cDNA consisted of 981 nucleotides encoding a protein of 326 amino acids. The quantitative PCR data showed that mc4r mRNA was primarily expressed in the brain, gonad, stomach and intestine. In the brain, mc4r was found to be primarily located in the hypothalamus. Both α-MSH and ß-MSH increased gnih expression and decreased sgnrh and cgnrh expression (P < 0.05). α-MSH and ß-MSH had opposite effects on kisspeptin expression. In contrast, α-MSH and ß-MSH increased the expression of cyp11, cyp19, 3ß-hsd and star. In summary, our study shows that MC4R in black rockfish might regulate reproductive function and that the effects of α-MSH and ß-MSH might differ.


Subject(s)
Fishes/genetics , Perciformes/genetics , Receptor, Melanocortin, Type 4/genetics , Reproduction/genetics , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , Fishes/growth & development , Gene Expression Regulation, Developmental/genetics , Gonads/growth & development , Hypothalamus/growth & development , Perciformes/growth & development , Phylogeny , RNA, Messenger/genetics , alpha-MSH/genetics , beta-MSH/genetics
7.
Mol Metab ; 17: 82-97, 2018 11.
Article in English | MEDLINE | ID: mdl-30201275

ABSTRACT

OBJECTIVE: The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS: We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS: In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of ß-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS: Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and ß-MSH are likely to be the predominant physiological products acting on melanocortin receptors.


Subject(s)
Melanocortins/metabolism , alpha-MSH/metabolism , beta-MSH/metabolism , Chromatography, Liquid , Female , Homeostasis/physiology , Humans , Hypothalamus , Leptin/metabolism , Male , Mass Spectrometry/methods , Neurons/metabolism , Neuropeptides/metabolism , Pluripotent Stem Cells/metabolism , Pro-Opiomelanocortin/metabolism , Receptors, Melanocortin/metabolism , Tandem Mass Spectrometry
8.
Neurochem Int ; 102: 105-113, 2017 01.
Article in English | MEDLINE | ID: mdl-27916541

ABSTRACT

GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 µM and 320 µM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle "similar targets bind similar ligands", we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and ß-melanocyte stimulating hormone (α-MSH and ß-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca2+-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, ß-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides.


Subject(s)
Adrenocorticotropic Hormone/metabolism , Melanocytes/metabolism , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , alpha-MSH/metabolism , beta-MSH/metabolism , Amino Acid Motifs , Animals , CHO Cells , Cricetulus , Melanocyte-Stimulating Hormones/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/metabolism
9.
Cell Metab ; 23(5): 893-900, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27157046

ABSTRACT

Sequencing of candidate genes for obesity in Labrador retriever dogs identified a 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12%. The deletion disrupts the ß-MSH and ß-endorphin coding sequences and is associated with body weight (per allele effect of 0.33 SD), adiposity, and greater food motivation. Among other dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation. The mutation is significantly more common in Labrador retrievers selected to become assistance dogs than pets. In conclusion, the deletion in POMC is a significant modifier of weight and appetite in Labrador retrievers and FCRs and may influence other behavioral traits.


Subject(s)
Appetite/genetics , Body Weight/genetics , Gene Deletion , Obesity/genetics , Pro-Opiomelanocortin/genetics , Adiposity/genetics , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , COS Cells , Chlorocebus aethiops , Dogs , Feeding Behavior , Genotype , Pro-Opiomelanocortin/chemistry , Pro-Opiomelanocortin/metabolism , Receptors, Melanocortin/metabolism , beta-MSH/metabolism
10.
Peptides ; 37(1): 13-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22760063

ABSTRACT

Broiler chicks eat more food than layer chicks. However, the causes of the difference in food intake in the neonatal period between these strains are not clear. In this study, we examined the involvement of proopiomelanocortin (POMC)-derived melanocortin peptides α-, ß- and γ-melanocyte-stimulating hormones (MSHs) in the difference in food intake between broiler and layer chicks. First, we compared the hypothalamic mRNA levels of POMC between these strains and found that there was no significant difference in these levels between broiler and layer chicks. Next, we examined the effects of central administration of MSHs on food intake in these strains. Central administration of α-MSH significantly suppressed food intake in both strains. Central administration of ß-MSH significantly suppressed food intake in layer chicks, but not in broiler chicks, while central administration of γ-MSH did not influence food intake in either strain. It is therefore likely that the absence of the anorexigenic effect of ß-MSH might be related to the increased food intake in broiler chicks.


Subject(s)
Appetite/drug effects , Chickens/metabolism , Energy Intake/drug effects , alpha-MSH/physiology , beta-MSH/physiology , gamma-MSH/physiology , Animals , Gene Expression , Hypothalamus/metabolism , Male , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/pharmacology , beta-MSH/pharmacology , gamma-MSH/pharmacology
11.
Peptides ; 32(10): 2127-30, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21889556

ABSTRACT

Direct tissue matrix-assisted laser desorption ionization with time-of-flight mass spectrometry analysis provides a selective detection of mass profile for the peptides contained into cell secretory granules. By this mass spectrometry with slice of pituitary, two novel molecular forms of pro-opimelanocrtin related hormone were found in the orange-red strain medaka (Oryzias latipes var.). The structures of [N,O-diacetyl Serine(1), O-acetyl Serine(3)]-α-melanocyte-stimulating hormone (MSH) and [hydroxyproline(15)]-ß-MSH, together with [phosphoserine(15)]-corticotropin-like intermediate lobe peptide, were determined for the first time using a collision-induced dissociation with electrospray ionization mass spectrometry. A combination of mass spectrometry analyses is thus a powerful tool to lead to the elucidation of the post-translational processing from the pre-prohormone.


Subject(s)
Oryzias/metabolism , Pituitary Gland/chemistry , Pro-Opiomelanocortin/metabolism , Protein Processing, Post-Translational , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amino Acid Sequence , Animals , Molecular Sequence Data , Oryzias/anatomy & histology , Pituitary Gland/metabolism , Pro-Opiomelanocortin/chemistry , Pro-Opiomelanocortin/genetics , alpha-MSH/chemistry , alpha-MSH/genetics , alpha-MSH/metabolism , beta-MSH/chemistry , beta-MSH/genetics , beta-MSH/metabolism
12.
Methods Mol Biol ; 768: 13-9, 2011.
Article in English | MEDLINE | ID: mdl-21805236

ABSTRACT

When I became a physician and an endocrinologist in the early 1960s, peptide hormone sequencing was still in its infancy; it was also far removed from my immediate interests. Through chance encounters with prominent teachers and mentors, I later became increasingly convinced that elucidation of the primary sequence of peptide hormones is key to understanding their production as well as their functions in human health and disease. My interest for pituitary hormones led me to discover that the sequence of ß-melanocyte-stimulating hormone was contained within that γ and ß-lipotropins and could be released from the latter by limited endoproteolysis. This prohormone theory became the leitmotiv of my career as a clinician/scientist. Through serendipity and the efforts of many laboratories including mine, this theory has now been widely confirmed, extended to various precursor proteins and implicated in many diseases. It has led to our discovery of the proprotein convertases.


Subject(s)
Endorphins/metabolism , Pro-Opiomelanocortin/metabolism , Proprotein Convertases/metabolism , Protein Precursors/metabolism , Protein Processing, Post-Translational/physiology , beta-MSH/biosynthesis , Amino Acid Sequence , Humans , Phosphorylation , Pituitary Gland/metabolism
13.
Biochim Biophys Acta ; 1812(9): 1190-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21729752

ABSTRACT

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor critically involved in regulating energy balance. MC4R activation results in decreased food intake and increased energy expenditure. Genetic and pharmacological studies demonstrated that the MC4R regulation of energy balance is conserved from fish to mammals. In humans, more than 150 naturally occurring mutations in the MC4R gene have been identified. Functional study of mutant MC4Rs is an important component in proving the causal link between MC4R mutation and obesity as well as the basis of personalized medicine. In this article, we studied 20 MC4R mutations that were either not characterized or not fully characterized. We showed that 11 mutants had decreased or absent cell surface expression. D126Y was defective in ligand binding. Three mutants were constitutively active but had decreased cell surface expression. Eleven mutants had decreased basal signaling, with two mutants defective only in this parameter, suggesting that impaired basal signaling might also be a cause of obesity. Five mutants had normal functions. In summary, we provided detailed functional data for further studies on identifying therapeutic approaches for personalized medicine to treat patients harboring these mutations.


Subject(s)
Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/physiology , Amino Acid Sequence , Cyclic AMP/biosynthesis , HEK293 Cells , Humans , Molecular Sequence Data , Mutation , Signal Transduction/physiology , Transfection , alpha-MSH/physiology , beta-MSH/physiology
14.
Domest Anim Endocrinol ; 41(2): 91-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21741577

ABSTRACT

Dogs have become one of the most important companion animals in modern society. However, it is estimated that 20% to 40% of owned dogs are obese, suggesting that obesity has become one of the most important canine health problem. In addition, obesity in dogs also leads to type II diabetes. Because the melanocortin-4 receptor (MC4R) has been shown to be essential in maintaining energy homeostasis in several different species, including rodents and humans, we initiated studies toward elucidating the roles of MC4R in obesity pathogenesis in dogs. Canine MC4R has been cloned, and a missense variant V213F was identified. We designed primers and successfully cloned canine MC4R and generated the variant V213F by site-directed mutagenesis. The objective of this study was to investigate the pharmacological properties of canine MC4R and its natural variant V213F. We measured ligand binding and signaling properties with the use of both natural and synthetic ligands. Human MC4R was also included in the experiments for comparison. Both wild-type canine MC4R and its natural variant V213F functioned normally in terms of binding and signaling. Of the ligands we used, [Nle(4), D-Phe(7)]-α-melanocyte-stimulating hormone is the most potent ligand. We conclude that the cloned canine MC4R is a functional receptor, and the natural variant V213F does not have any functional defect and therefore is not likely to cause obesity in dogs.


Subject(s)
Obesity/veterinary , Receptor, Melanocortin, Type 4/metabolism , Animals , Dogs , Energy Metabolism , Genetic Variation , Inhibitory Concentration 50 , Mutagenesis, Site-Directed , Obesity/genetics , Obesity/metabolism , Polymorphism, Single Nucleotide , Protein Isoforms , Receptor, Melanocortin, Type 4/genetics , Signal Transduction , alpha-MSH/metabolism , beta-MSH/metabolism
15.
Mol Cells ; 30(6): 551-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21110130

ABSTRACT

The solution structures and inter-molecular interaction of the cyclic melanocortin antagonists SHU9119, JKC363, HS014, and HS024 with receptor molecules have been determined by NMR spectroscopy and molecular modeling. While SHU9119 is known as a nonselective antagonist, JKC363, HS014, and HS024 are selective for the melanocortin subtype-4 receptor (MC4R) involved in modulation of food intake. Data from NMR and molecular dynamics suggest that the conformation of the Trp9 sidechain in the three MC4R-selective antagonists is quite different from that of SHU9119. This result strongly supports the concept that the spatial orientation of the hydrophobic aromatic residue is more important for determining selectivity than the presence of a basic, "arginine-like" moiety responsible for biological activity. We propose that the conformation of hydrophobic residues of MCR antagonists is critical for receptor-specific selectivity.


Subject(s)
Melanocyte-Stimulating Hormones/chemistry , Peptides, Cyclic/chemistry , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptors, Melanocortin/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Drug Interactions , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Melanocyte-Stimulating Hormones/chemical synthesis , Melanocyte-Stimulating Hormones/pharmacology , Models, Molecular , Molecular Sequence Data , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Receptor, Melanocortin, Type 4/drug effects , Receptors, Melanocortin/drug effects , Sensitivity and Specificity , Solutions/chemistry , Structure-Activity Relationship , beta-MSH/chemical synthesis , beta-MSH/chemistry , beta-MSH/pharmacology
16.
Biochemistry ; 49(22): 4583-600, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20462274

ABSTRACT

The melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor (GPCR) that is expressed in the central nervous system and has a role in regulating feeding behavior, obesity, energy homeostasis, male erectile response, and blood pressure. Since the report of the MC4R knockout mouse in 1997, the field has been searching for links between this genetic biomarker and human obesity and type 2 diabetes. More then 80 single nucleotide polymorphisms (SNPs) have been identified from human patients, both obese and nonobese controls. Many significant studies have been performed examining the pharmacological characteristics of these hMC4R SNPs in attempts to identify a molecular defects/insights that might link a genetic factor to the obese phenotype observed in patients possessing these mutations. Our laboratory has previously reported the pharmacological characterization of 40 of these polymorphic hMC4 receptors with multiple endogenous and synthetic ligands. The goal of the current study is to perform a similar comprehensive side-by-side characterization of 30 additional human hMC4R with single nucleotide polymorphisms using multiple endogenous agonists [alpha-, beta-, and gamma(2)-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH)], the antagonist agouti-related protein hAGRP(87-132), and synthetic agonists [NDP-MSH, MTII, and the tetrapeptide Ac-His-dPhe-Arg-Trp-NH(2) (JRH887-9)]. These in vitro data, in some cases, provide a putative molecular link between dysfunctional hMC4R's and human obesity. These 30 hMC4R SNPs include R7H, R18H, R18L, S36Y, P48S, V50M, F51L, E61K, I69T, D90N, S94R, G98R, I121T, A154D, Y157S, W174C, G181D, F202L, A219 V, I226T, G231S, G238D, N240S, C271R, S295P, P299L, E308K, I317V, L325F, and 750DelGA. All but the N240S hMC4R were identified in obese patients. Additionally, we have characterized a double I102T/V103I hMC4R. In addition to the pharmacological characterization, the hMC4R variants were evaluated for cell surface expression by flow cytometry. The F51L, I69T, and A219V hMC4Rs possessed full agonist activity and significantly decreased endogenous agonist ligand potency. At the E61K, D90N, Y157S, and C271R hMC4Rs, all agonist ligands examined were only partially efficacious in generating a maximal signaling response (partial agonists) and possessed significantly decreased endogenous agonist ligand potency. Only the A219V, G238D, and S295P hMC4Rs possessed significantly decreased AGRP(87-132) antagonist potency. These data provide new information for use in GPCR computational development as well as insights into MC4R structure ad function.


Subject(s)
Agouti-Related Protein/antagonists & inhibitors , Agouti-Related Protein/physiology , Polymorphism, Genetic , Pro-Opiomelanocortin/physiology , Receptor, Melanocortin, Type 4/genetics , Agouti-Related Protein/biosynthesis , Agouti-Related Protein/metabolism , Amino Acid Sequence , Binding, Competitive/drug effects , Binding, Competitive/genetics , Cell Line , Gene Expression Regulation/drug effects , Humans , Ligands , Male , Molecular Sequence Data , Mutagenesis, Site-Directed , Obesity/genetics , Obesity/metabolism , Pro-Opiomelanocortin/agonists , Pro-Opiomelanocortin/antagonists & inhibitors , Pro-Opiomelanocortin/biosynthesis , Protein Binding/drug effects , Protein Binding/genetics , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/biosynthesis , alpha-MSH/analogs & derivatives , alpha-MSH/metabolism , alpha-MSH/pharmacology , alpha-MSH/physiology , beta-MSH/metabolism , beta-MSH/pharmacology , gamma-MSH/metabolism , gamma-MSH/pharmacology
17.
Molecules ; 15(3): 1232-41, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20335976

ABSTRACT

Research over the past decade has indicated that melanocortin peptides are potent inhibitors of inflammation and a promising source of new anti-inflammatory and cytoprotective therapies. The purpose of the present paper is to compare protective effects of alpha-, beta-, and gamma-melanocyte stimulating hormone on acetaminophen induced liver lesions in male CBA mice. Acetaminophen was applied intragastrically in a dose of 150 mg/kg, and tested substances were applied intraperitoneally 1 hour before acetaminophen. Mice were sacrificed after 24 hours and intensity of liver injury was estimated by measurement of plasma transaminase activity (AST and ALT) and histopathological grading of lesions. It was found that alpha-, beta-, and gamma-MSH decrease intensity of lesions by both criteria in a dose-dependent manner.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/prevention & control , alpha-MSH/pharmacology , beta-MSH/pharmacology , gamma-MSH/pharmacology , Adrenocorticotropic Hormone/chemistry , Alanine Transaminase/blood , Amino Acid Sequence , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/enzymology , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred CBA , Molecular Sequence Data , alpha-MSH/chemistry , beta-MSH/chemistry , gamma-MSH/chemistry
18.
Yakugaku Zasshi ; 129(10): 1141-54, 2009 Oct.
Article in Japanese | MEDLINE | ID: mdl-19797870

ABSTRACT

This review documents my research for the past 45 years in peptide chemistry. Initially, in order to study the structure-activity relationships of active center of alpha- and beta-melanocyte stimulating hormones (H-His-Phe-Arg-Trp-Gly-OH), we employed D-amino acids. That approach yielded first published report in 1965 of antagonists containing D-amino acids. Monkey beta-melanocyte stimulating hormone (beta-MSH), an 18 amino acid peptide stimulated pigment cells. We synthesized beta-MSH and fragments thereof, and studied in detail structure-activity relationships. A major and valuable result revealed that the C-terminal pentadecapeptide of beta-MSH exhibited higher MSH activity than the parent hormone providing a new question; namely, what was the role of the N-terminal tripeptide? In order to identify the novel enzyme, spleen fibrinolytic proteinase (SFP), I developed a specific chromogenic substrate, Suc-Ala-Tyr-Leu-Val-pNA, and a specific inhibitor, Suc-Tyr-D-Leu-D-Val-pNA, once again employing my D-amino acid strategy. SFP was purified by affinity chromatography using Suc-Tyr-D-Leu-D-Val-pNA as the bound ligand. The success of this approach provided me the incentive to develop a variety of potential drugs. Thus, I prepared a specific plasmin inhibitor (YO-2) and a plasma kallikrein inhibitor (PKSI-527). Next, my research developed novel opioid receptor specific opioid agonists and antagonists based on 2',6'-dimethyl-L-tyrosine (Dmt) dimers coupled with unique pyrazinone ring as a spacer. They exhibited potent oral antinociceptive activity acting through the mu-opioid receptor. Potent mu-receptor agonists (H-Dmt-Pro-Phe/Trp- Phe-NH(2)) were transformed into highly selective mu-receptor antagonists (N-allyl-Dmt-Pro-Phe/Trp-Phe-NH(2)), which reversed ethanol-induced increases in GABAergic neurotransmission, suggesting the possibility that they may emerge as candidates for the treatment of ethanol addiction.


Subject(s)
Amino Acids , Melanocyte-Stimulating Hormones , Peptides/chemical synthesis , Receptors, Opioid, mu , Alcoholism/drug therapy , Drug Discovery , Humans , Melanocyte-Stimulating Hormones/chemical synthesis , Melanocyte-Stimulating Hormones/pharmacology , Peptides/chemistry , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Structure-Activity Relationship , beta-MSH/chemical synthesis , beta-MSH/pharmacology
19.
Adv Clin Chem ; 48: 95-109, 2009.
Article in English | MEDLINE | ID: mdl-19803416

ABSTRACT

The current alarming spread of obesity in many parts of the world is caused by a sudden environmental shift characterized by replacement of a frugal diet with low cost, energy dense food, and little requests for physical activity during work and leisure time. Yet, not all people exposed to an obesogenic environment become obese, and individual differences in the propensity to gain weight as well as the occurrence of different obese phenotypes within the same environment indicate that the genetic heritage in this regard is significant and heterogeneous. The central melanocortin circuit has received much attention during the past decade, since mutations of genes expressing some key molecules in neurons of this system were discovered, which may cause monogenic forms of obesity in animals and humans. Within the arcuate nucleus of the hypothalamus the prohormone proopiomelanocortin is posttranslationally cleaved to produce the alpha-melanocyte stimulating hormone, a peptide with anorexigenic effects upon activation of the melanocortin-4 receptor (MC4R) expressed on the surface of target neurons. Studies regarding the frequency of MC4R mutations associated with human obesity have provided variable results (up to 6% of obese subjects). Various findings suggest an oligogenic and codominant mode of inheritance for MC4R deficiency, with modulation of expressivity and penetrance of the phenotype. The yield of MC4R testing in clinical diagnosis and treatment of obesity is at present undefined since the relatively low prevalence of MC4R pathogenic variants in the general population, along with the high number of sequence variants, has so far compromised the devising of systematic controlled intervention studies. Hopefully, in the future, MC4R testing will have practical implications for the development of new mechanism-based therapy of obesity as well as for the design of specific and more effective protocols, based on lifestyle intervention and current pharmacological or surgical approaches, for management of obesity in MC4R-mutated individuals.


Subject(s)
Mutation , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Agouti-Related Protein/metabolism , Body Weight/genetics , Body Weight/physiology , Central Nervous System/metabolism , Humans , Leptin/metabolism , Obesity/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , beta-MSH/metabolism
20.
Neurosci Lett ; 458(3): 102-5, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19393716

ABSTRACT

Proopiomelanocortin (POMC, a precursor of anorexigenic neuropeptides) neurons in hypothalamus suppresses food intake in both mammals and chickens. In mammals, several lines of evidence suggest that POMC-derived anorexigenic peptides upregulate mRNA levels of anorexigenic peptides such as corticotropin-releasing factor (CRF) and thyrotropin-releasing factor and downregulate mRNA levels of orexigenic peptides such as orexin and melanin-concentrating hormone. However, the POMC-induced anorexigenic pathway in chickens has not been well characterized. In the present study, we investigated how POMC neurons regulate mechanisms of food intake using an anorexigenic peptide, beta-melanocyte-stimulating hormone (beta-MSH), derived from the post-transcriptional cleavage of POMC. Central administration of beta-MSH in chicks significantly suppressed food intake, and importantly, this suppression was accompanied by a significant upregulation of CRF mRNA levels. Furthermore, the CRF type 2 receptor antagonist alpha-helical CRF significantly reversed the anorexigenic action of beta-MSH. These findings indicate that CRF and its receptor, CRF type 2 receptor, act as the major mediators in beta-MSH-induced anorexigenic action in chicks. beta-MSH significantly increased orexin mRNA levels and did not alter mRNA levels of thyrotropin-releasing factor and melanin-concentrating hormone in chicks, suggesting that the beta-MSH-induced anorexigenic pathway in chicks is different from that in mammals. Increases in orexin mRNA levels were accompanied by significant decreases in plasma glucose concentration, suggesting that orexin mRNA might be stimulated by beta-MSH-induced hypoglycemia. Thus, this study demonstrates the direct evidence that CRF is a critical downstream target in the beta-MSH-induced anorexigenic pathway in chicks.


Subject(s)
Anorexia/etiology , Corticotropin-Releasing Hormone/physiology , Pro-Opiomelanocortin/physiology , beta-MSH/pharmacology , Animals , Anorexia/chemically induced , Appetite , Chickens , Corticotropin-Releasing Hormone/genetics , DNA Primers , Feeding Behavior/drug effects , Feeding Behavior/physiology , Hypothalamus/drug effects , Hypothalamus/physiology , Hypothalamus/physiopathology , Injections, Intraventricular , Mammals , Neurons/physiology , Pro-Opiomelanocortin/genetics , beta-MSH/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...