Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 186: 114437, 2021 04.
Article in English | MEDLINE | ID: mdl-33571503

ABSTRACT

MerTK has been identified as a promising target for therapeutic intervention in glioblastoma. Genetic studies documented a range of oncogenic processes that MerTK targeting could influence, however robust pharmacological validation has been missing. The aim of this study was to assess therapeutic potential of MerTK inhibitors in glioblastoma therapy. Unlike previous studies, our work provides several lines of evidence that MerTK activity is dispensable for glioblastoma growth. We observed heterogeneous responses to MerTK inhibitors that could not be correlated to MerTK inhibition or MerTK expression in cells. The more selective MerTK inhibitors UNC2250 and UNC2580A lack the anti-proliferative potency of less-selective inhibitors exemplified by UNC2025. Functional assays in MerTK-high and MerTK-deficient cells further demonstrate that the anti-cancer efficacy of UNC2025 is MerTK-independent. However, despite its efficacy in vitro, UNC2025 failed to attenuate glioblastoma growth in vivo. Gene expression analysis from cohorts of glioblastoma patients identified that MerTK expression correlates negatively with proliferation and positively with quiescence genes, suggesting that MerTK regulates dormancy rather than proliferation in glioblastoma. In summary, this study demonstrates the importance of orthogonal inhibitors and disease-relevant models in target validation studies and raises a possibility that MerTK inhibitors could be used to target dormant glioblastoma cells.


Subject(s)
Cell Proliferation/physiology , Glioblastoma/enzymology , Neoplastic Stem Cells/enzymology , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/biosynthesis , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclohexanols/pharmacology , Dose-Response Relationship, Drug , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Xenograft Model Antitumor Assays/methods
2.
J Neuroinflammation ; 18(1): 2, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402181

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. METHODS: The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. RESULTS: Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation. CONCLUSIONS: Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Cell Polarity/physiology , Inflammation Mediators/metabolism , Macrophages/metabolism , Microglia/metabolism , c-Mer Tyrosine Kinase/biosynthesis , Animals , Brain Injuries, Traumatic/prevention & control , Female , Inflammation Mediators/antagonists & inhibitors , Macrophage Activation/physiology , Male , Mice , Mice, Inbred C57BL
3.
Biomaterials ; 197: 380-392, 2019 03.
Article in English | MEDLINE | ID: mdl-30703743

ABSTRACT

Systemic lupus erythematosus (SLE) constitutes an autoimmune disease characterized by the breakdown of tolerance to self-antigens, sustained production of pathogenic autoantibodies, and damage to multiple organs and tissues. Nanoparticle (NP)-based therapeutics have demonstrated efficacy in attenuating the progression of SLE. However, investigations of nano-drugs that address the crucial initiating factor in the pathogenesis of SLE; e.g., inefficient clearance of apoptotic cells by phagocytes and consequent accumulation of self-antigens, have seldom been reported. Here, an apoptotic cell-mimicking gold nanocage (AuNC)-based nano drug carrier capable of correcting the impaired clearance of apoptotic cells in SLE was rationally designed and generated by conjugating phosphatidylserine (PS) on the surface of liposome-coated AuNCs for liver X receptor (LXR) agonist T0901317 delivery. Notably, PS-lipos-AuNC@T0901317 could efficiently enhance apoptotic cell clearance by elevating the expression of Mer, one of the pivotal phagocytosis-associated receptors on macrophages, resulting in decreased production of anti-dsDNA autoantibodies, reduced inflammatory response, and alleviation of kidney damage in lupus model mice. Additionally, PS-lipos-AuNC could be tracked by photoacoustic imaging for nano drug carrier biodistribution. By addressing the crucial pathogenic factor of SLE, the NP-based delivery system in this study is envisioned to provide a promising strategy to treat this complex and challenging disease.


Subject(s)
Apoptosis , Drug Delivery Systems , Gold/administration & dosage , Hydrocarbons, Fluorinated/administration & dosage , Liver X Receptors/agonists , Lupus Erythematosus, Systemic/drug therapy , Nanocapsules/administration & dosage , Sulfonamides/administration & dosage , Animals , Autoantibodies/analysis , Cytokines/metabolism , Disease Progression , Drug Evaluation, Preclinical , Female , Gold/pharmacokinetics , Hydrocarbons, Fluorinated/therapeutic use , Hydrocarbons, Fluorinated/toxicity , Liposomes/administration & dosage , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Phosphatidylserines , Sulfonamides/therapeutic use , Sulfonamides/toxicity , Tissue Distribution , c-Mer Tyrosine Kinase/biosynthesis , c-Mer Tyrosine Kinase/genetics
4.
Clin Rheumatol ; 36(5): 1063-1070, 2017 May.
Article in English | MEDLINE | ID: mdl-28127639

ABSTRACT

Mer and Axl receptor tyrosine kinases (MerTK and AxlTK) play important roles in the clearance of apoptotic cells and the inhibition of inflammatory responses. Previous studies demonstrated that they might participate in glomerular injury in mice model. This study aimed to elucidate the expression of MerTK and AxlTK on glomeruli and analyze their clinical significance in lupus nephritis (LN) patients. Twenty-nine LN and 10 primary nephrotic syndrome (NS) patients were recruited. The expression of MerTK and AxlTK on glomeruli was measured by immunohistochemistry. Correlations between the levels of MerTK and AxlTK and clinical data were investigated. Statistical differences in each group were calculated by one-way analysis of variance, t test, or Mann-Whitney U test. Correlations were evaluated with Pearson's or Spearman's correlation tests. Both MerTK and AxlTK were expressed mainly on mesangial cells. LN patients demonstrated more expression of MerTK and AxlTK than primary NS patients (1.19 ± 1.01 × 10-2 vs 0.21 ± 0.29 × 10-2, 7.25 ± 2.69 × 10-2 vs 3.10 ± 1.22 × 10-2, p < 0.01). In LN patients, MerTK expression correlated with AxlTK (r = 0.529, p < 0.01). LN patients with class IV expressed more MerTK and AxlTK (1.50 ± 1.03 × 10-2 and 7.56 ± 2.93 × 10-2). The expression of MerTK and AxlTK varied according to the deposition of immunoglobulin and complements on glomeruli. Both MerTK and AxlTK expressions were increased on glomeruli and varied according to pathological classifications. Thus, we assumed that both two subsets might participate in the pathogenesis of LN.


Subject(s)
DNA/genetics , Gene Expression Regulation , Kidney Glomerulus/metabolism , Lupus Nephritis/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , c-Mer Tyrosine Kinase/genetics , Apoptosis , Biomarkers/metabolism , Cells, Cultured , Disease Progression , Follow-Up Studies , Humans , Immunohistochemistry , Kidney Glomerulus/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Proto-Oncogene Proteins/biosynthesis , Receptor Protein-Tyrosine Kinases/biosynthesis , Retrospective Studies , Time Factors , c-Mer Tyrosine Kinase/biosynthesis , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...