Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
1.
Int J Med Sci ; 21(8): 1472-1490, 2024.
Article in English | MEDLINE | ID: mdl-38903914

ABSTRACT

Synuclein family members (Snca, Sncb, and Scng) are expressed in the retina, but their precise locations and roles are poorly understood. We performed an extensive analysis of the single-cell transcriptome in healthy and injured retinas to investigate their expression patterns and roles. We observed the expression of all synuclein family members in retinal ganglion cells (RGCs), which remained consistent across species (human, mouse, and chicken). We unveiled differential expression of Snca across distinct clusters (highly expressed in most), while Sncb and Sncg displayed uniform expression across all clusters. Further, we observed a decreased expression in RGCs following traumatic axonal injury. However, the proportion of α-Syn-positive RGCs in all RGCs and α-Syn-positive intrinsically photosensitive retinal ganglion cells (ipRGCs) in all ipRGCs remained unaltered. Lastly, we identified changes in communication patterns preceding cell death, with particular significance in the pleiotrophin-nucleolin (Ptn-Ncl) and neural cell adhesion molecule signaling pathways, where communication differences were pronounced between cells with varying expression levels of Snca. Our study employs an innovative approach using scRNA-seq to characterize synuclein expression in health retinal cells, specifically focusing on RGC subtypes, advances our knowledge of retinal physiology and pathology.


Subject(s)
Retinal Ganglion Cells , alpha-Synuclein , gamma-Synuclein , Animals , Retinal Ganglion Cells/metabolism , Humans , Mice , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , Chickens/genetics , Transcriptome , Single-Cell Analysis , Retina/metabolism , Retina/cytology , Neoplasm Proteins
2.
ACS Chem Neurosci ; 15(9): 1770-1786, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38637513

ABSTRACT

Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 µM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.


Subject(s)
Amyloid , Masoprocol , Protein Aggregates , gamma-Synuclein , Masoprocol/analogs & derivatives , Masoprocol/chemistry , Masoprocol/pharmacology , Humans , gamma-Synuclein/chemistry , Amyloid/antagonists & inhibitors , Amyloid/chemistry , Protein Aggregates/drug effects , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared , Molecular Docking Simulation , Hydrophobic and Hydrophilic Interactions
3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542197

ABSTRACT

Synucleins are a family of proteins consisting of α, ß, and γ synuclein (syn) [...].


Subject(s)
alpha-Synuclein , beta-Synuclein , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism
4.
Integr Cancer Ther ; 23: 15347354241233258, 2024.
Article in English | MEDLINE | ID: mdl-38369762

ABSTRACT

BACKGROUND: Soothing the liver (called Shu Gan Jie Yu in Chinese, SGJY) is a significant therapeutic method for breast cancer in TCM. In this study, 3 liver-soothing herbs, including Cyperus rotundus L., Citrus medica L. var. sarcodactylis Swingle and Rosa rugosa Thunb. were selected and combined to form a SGJY herbal combinatory. THE AIM OF THE STUDY: To investigate the inhibiting effect of SGJY on breast cancer in vivo and vitro, and to explore the potential mechanisms. MATERIALS AND METHODS: SGJY herbal combination was extracted using water. A breast cancer rat model was developed by chemical DMBA by gavage, then treated with SGJY for 11 weeks. The tumor tissue was preserved for RNA sequencing and analyzed by IPA software. The inhibition effects of SGJY on MCF-7 and T47D breast cancer cells were investigated by SRB assay and cell apoptosis analysis, and the protein expression levels of SNCG, ER-α, p-AKT and p-ERK were measured by western blotting. RESULTS: SGJY significantly reduced the tumor weight and volume, and the level of estradiol in serum. The results of IPA analysis reveal SGJY upregulated 7 canonical pathways and downregulated 16 canonical pathways. Estrogen receptor signaling was the key canonical pathway with 9 genes downregulated. The results of upstream regulator analysis reveal beta-estradiol was the central target; the upstream regulator network scheme showed that 86 genes could affect the expression of the beta-estradiol, including SNCG, CCL21 and MB. Additionally, SGJY was verified to significantly alter the expression of SNCG mRNA, CCL21 mRNA and MB mRNA which was consistent with the data of RNA-Seq. The inhibition effects of SGJY exhibited a dose-dependent response. The apoptosis rates of MCF7 and T47D cells were upregulated. The protein expression of SNCG, ER-α, p-AKT and p-ERK were all significantly decreased by SGJY on MCF-7 and T47D cells. CONCLUSION: The results demonstrate that SGJY may inhibit the growth of breast cancer. The mechanism might involve downregulating the level of serum estradiol, and suppressing the protein expression in the SNCG/ER-α/AKT-ERK pathway.


Subject(s)
Breast Neoplasms , MAP Kinase Signaling System , Animals , Female , Humans , Rats , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Estradiol , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/metabolism , RNA, Messenger/metabolism , RNA-Seq
5.
Proc Natl Acad Sci U S A ; 121(2): e2309700120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38170745

ABSTRACT

α-, ß-, and γ-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson's disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although γ-synuclein (γSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, γSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding γSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 γSyn also results in the formation of γSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of γSyn and highlight the P1 region in driving amyloid formation in another synuclein family member.


Subject(s)
Amyotrophic Lateral Sclerosis , Parkinson Disease , Animals , Humans , Amyloid/chemistry , Amyotrophic Lateral Sclerosis/genetics , gamma-Synuclein/genetics , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Amyloidogenic Proteins
6.
Biochim Biophys Acta Proteins Proteom ; 1871(5): 140932, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37433401

ABSTRACT

Human α-, ß-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, ß-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, ß-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of ß-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.


Subject(s)
Intrinsically Disordered Proteins , Trehalose , Humans , gamma-Synuclein/chemistry , Disaccharides , alpha-Synuclein/chemistry , Protein Conformation , Intrinsically Disordered Proteins/chemistry , Brain/metabolism , Molecular Chaperones/metabolism
7.
Arch Biochem Biophys ; 744: 109698, 2023 08.
Article in English | MEDLINE | ID: mdl-37487948

ABSTRACT

Numerous epidemiological studies suggest a link between Parkinson's disease (PD) and cancer, indicating that PD-associated proteins may mediate the development of cancer. Here, we investigated a potential role of PD-associated protein α-synuclein in regulating liver cancer progression in vivo and in vitro. We found the negative correlation of α-synuclein with metabotropic glutamate receptor 5 (mGluR5) and γ-synuclein by analyzing the data from The Cancer Genome Atlas database, liver cancer patients and hepatoma cells with overexpressed α-synuclein. Moreover, upregulated α-synuclein suppressed the growth, migration, and invasion. α-synuclein was found to associate with mGluR5 and γ-synuclein, and the truncated N-terminal of α-synuclein was essential for the interaction. Furthermore, overexpressed α-synuclein exerted the inhibitory effect on hepatoma cells through the degradation of mGluR5 and γ-synuclein via α-synuclein-dependent autophagy-lysosomal pathway (ALP). Consistently, in vivo experiments with rotenone-induced rat model of PD also confirmed that, upregulated α-synuclein in liver cancer tissues through targeting on mGluR5/α-synuclein/γ-synuclein complex inhibited tumorigenesis involving in ALP-dependent degradation of mGluR5 and γ-synuclein. These findings give an insight into an important role of PD-associated protein α-synuclein accompanied by the complex of mGluR5/α-synuclein/γ-synuclein in distant communications between PD and liver cancer, and provide a new strategy in therapeutics for the treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Parkinson Disease , Animals , Rats , alpha-Synuclein/metabolism , Autophagy/physiology , Carcinogenesis , Cell Transformation, Neoplastic , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Up-Regulation , Humans
8.
Aging (Albany NY) ; 15(7): 2541-2553, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36996495

ABSTRACT

As a type of cell apoptosis, anoikis is caused by cells detachment from the extracellular matrix and anoikis resistance is central to cancer metastasis. Here, SNCG was identified as hub anoikis-associated gene in GC and associated with prognosis of patients with GC. To screen the hub anoikis-associated genes connected to GC, the database of Cancer Genome Atlas (TCGA) was employed. For further validating these identified genes, the Gene Expression Omnibus (GEO) dataset was applied, and Western blotting and quantitative Real-Time PCR were carried out. To Identify hub genes, we conducted the analyses of univariate Cox regression, differential expression, and weighted gene co-expression network analysis (WGCNA). According to the identified hub genes, we constructed a model of prognosis. Following complex analysis, SNCG was finally identified as hub anoikis-associated gene in GC. Indeed, K-M and receiver operating characteristic analyses suggested that the expression patterns of SNCG can be used as prognostic factors for GC survival. The expression and survival trends of SNCG were verified in the validation cohort and in vitro experimental analyses. The analysis of immune cell infiltration showed that the infiltrated immune cells varied among patients with GC and gene SNCG. Furthermore, due to the significant association of the constructed risk signature with patient age and survival, this risk signature can be used to predict the prognosis of GC. We suggest that SNCG was served as hub anoikis-associated gene in GC. Meanwhile, SNCG may have prognostic potential for overall patient survival.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Anoikis/genetics , Prognosis , Blotting, Western , Biomarkers , Neoplasm Proteins , gamma-Synuclein
9.
Cereb Cortex ; 33(8): 4293-4304, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36030380

ABSTRACT

Neocortical vasoactive intestinal polypeptide-expressing (VIP+) interneurons display highly diverse morpho-electrophysiological and molecular properties. To begin to understand the function of VIP+ interneurons in cortical circuits, they must be clearly and comprehensively classified into distinct subpopulations based on specific molecular markers. Here, we utilized patch-clamp RT-PCR (Patch-PCR) to simultaneously obtain the morpho-electric properties and mRNA profiles of 155 VIP+ interneurons in layers 2 and 3 (L2/3) of the mouse somatosensory cortex. Using an unsupervised clustering method, we identified 3 electrophysiological types (E-types) and 2 morphological types (M-types) of VIP+ interneurons. Joint clustering based on the combined electrophysiological and morphological features resulted in 3 morpho-electric types (ME-types). More importantly, we found these 3 ME-types expressed distinct marker genes: ~94% of Sncg+ cells were ME-type 1, 100% of Mybpc1+ cells were ME-type 2, and ~78% of Parm1+ were ME-type 3. By clarifying the properties of subpopulations of cortical L2/3 VIP+ interneurons, this study establishes a basis for future investigations aiming to elucidate their physiological roles.


Subject(s)
Somatosensory Cortex , Vasoactive Intestinal Peptide , Animals , Mice , Electrophysiological Phenomena , Interneurons/physiology , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/metabolism , Neoplasm Proteins/metabolism , gamma-Synuclein/metabolism , Androgen-Binding Protein/metabolism
10.
Genet Test Mol Biomarkers ; 26(9): 422-429, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36166741

ABSTRACT

Objective: The aim of this study was to determine whether the methylation patterns of the breast cancer-specific gene 1 (BCSG1) and the breast cancer susceptibility gene 1 (BRCA1) can be used as biomarkers for predicting the occurrence and development of breast cancer. Methods: Methylation-specific polymerase chain reaction (PCR) was used to detect the methylation status of the BCSG1 and BRCA1 genes in ductal infiltrating carcinomas of the breast; carcinoma in situ of the breast; fibroadenoma of the breast and adjacent normal tissues. Quantitative real-time PCR and immunohistochemistry were used to detect the expression levels of BCSG1 and BRCA1. The BCSG1 and BRCA1 genes were knocked down by siRNA to study their effect of BCSG1 and BRCA1 on the behaviour of breast cancer cell lines. Results: The BCSG1 gene was hypomethylated in breast cancer tissues, and its mRNA as well as its protein levels showed elevated expression compared to normal adjacent tissues. In contrast, the BRCA1 gene was hypermethylated in breast cancer tissues and showed correspondingly decreased mRNA and protein expression levels. In vitro experiments demonstrated that BCSG1 could promote the proliferation and migration of breast cancer cells. After inhibiting the methylation, the expression of both the BCSG1 and BRCA1 genes were increased. Conclusion: Abnormal methylation patterns of the BCSG1 and BRCA1 genes are associated with the development of breast cancer. Thus, methylatedion analyses of these genes have biomarker potential for breast cancer prognoses.


Subject(s)
Breast Neoplasms , gamma-Synuclein , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Cell Proliferation/genetics , DNA Methylation/genetics , Female , Humans , Methylation , Neoplasm Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
11.
Alzheimers Res Ther ; 14(1): 118, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045450

ABSTRACT

BACKGROUND: Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. METHODS: A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. RESULTS: CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14-3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14-3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. CONCLUSIONS: Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.


Subject(s)
Frontotemporal Dementia , Biomarkers/cerebrospinal fluid , C9orf72 Protein/cerebrospinal fluid , C9orf72 Protein/genetics , Frontotemporal Dementia/cerebrospinal fluid , Frontotemporal Dementia/genetics , Humans , Mutation/genetics , Neurogranin/cerebrospinal fluid , Neurogranin/genetics , Syntaxin 1/cerebrospinal fluid , Syntaxin 1/genetics , beta-Synuclein/genetics , gamma-Synuclein/cerebrospinal fluid , gamma-Synuclein/genetics , tau Proteins/genetics
12.
Adv Sci (Weinh) ; 9(29): e2200615, 2022 10.
Article in English | MEDLINE | ID: mdl-35988153

ABSTRACT

Axon pathfinding is a key step in neural circuits formation. However, the transcriptional mechanisms regulating its progression remain poorly understood. The binary decision of crossing or avoiding the midline taken by some neuronal axons during development represents a robust model to investigate the mechanisms that control the selection of axonal trajectories. Here, to identify novel regulators of axon guidance, this work compares the transcriptome and chromatin occupancy profiles of two neuronal subpopulations, ipsilateral (iRGC) and contralateral retinal ganglion cells (cRGC), with similar functions but divergent axon trajectories. These analyses retrieved a number of genes encoding for proteins not previously implicated in axon pathfinding. In vivo functional experiments confirm the implication of some of these candidates in axonal navigation. Among the candidate genes, γ-synuclein is identified as essential for inducing midline crossing. Footprint and luciferase assays demonstrate that this small-sized protein is regulated by the transcription factor (TF) Pou4f1 in cRGCs. It is also shown that Lhx2/9 are specifically expressed in iRGCs and control a program that partially overlaps with that regulated by Zic2, previously described as essential for iRGC specification. Overall, the analyses identify dozens of new molecules potentially involved in axon guidance and reveal the regulatory logic behind the selection of axonal trajectories.


Subject(s)
Axon Guidance , gamma-Synuclein , Chromatin/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Retinal Ganglion Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , gamma-Synuclein/metabolism
13.
Future Oncol ; 18(28): 3179-3190, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35947016

ABSTRACT

Aim: To explore the possibility of gastric juice (GJ)- and serum-derived SNCG as a potential biomarker for the early diagnosis of gastric cancer (GC). Materials & methods: GJ and serum samples were collected from 87 patients with GC, 38 patients with gastric precancerous lesions and 44 healthy volunteers. The levels of SNCG in GJ and serum samples were detected by ELISA. Results: The levels of SNCG in GJ and serum were significantly higher in the GC group when compared with the GPL group or the control group. The expression of SNCG in GJ and serum was associated with tumor node metastasis stage, lymph node metastasis, tumor size and drinking, and it is important for the diagnosis and prognosis of GC (p < 0.05). Conclusion: The findings highlight the significance of SNCG in GC diagnosis and prognosis and implicate SNCG as a promising candidate for GC treatment.


Gastric cancer (GC) has high morbidity and mortality rates due to its concealment in the early stage. At present, CEA, CA19-9, CA125, CA724, AFP, CA242 and CA50 are commonly used for the diagnosis of GC, but the effects are not satisfactory. Thus, a better biomarker for the diagnosis of GC is required. This study found that SNCG is highly expressed in the gastric juice and serum of GC patients and contributes to GC's progression. Detection of SNCG in gastric juice and serum is an ideal method for early diagnosis of GC with high specificity and sensitivity. Furthermore, SNCG has great value in the prognosis evaluation of GC, and high expression of SNCG predicts shorter survival for patients with GC, which provides a valuable reference for the clinical diagnosis and treatment of GC.


Subject(s)
Stomach Neoplasms , Biomarkers, Tumor , Early Detection of Cancer , Gastric Juice/chemistry , Humans , Neoplasm Proteins , Prognosis , Stomach Neoplasms/pathology , gamma-Synuclein
14.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955716

ABSTRACT

Parkinson's disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (ß-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, ß-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.


Subject(s)
Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain Stem/metabolism , Parkinson Disease/metabolism , Primates , Substantia Nigra/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , gamma-Synuclein/metabolism
15.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682736

ABSTRACT

The α-, ß- and γ-synucleins are small soluble proteins expressed in the nervous system of mammals and evolutionary conserved in vertebrates. After being discovered in the cartilaginous fish Torpedo californica, synucleins have been sequenced in all vertebrates, showing differences in the number of genes and splicing isoforms in different taxa. Although α-, ß- and γ-synucleins share high homology in the N-terminal sequence, suggesting their evolution from a common ancestor, the three isoforms also differ in molecular characteristics, expression levels and tissue distribution. Moreover, their functions have yet to be fully understood. Great scientific interest on synucleins mainly derives from the involvement of α-synuclein in human neurodegenerative diseases, collectively named synucleinopathies, which involve the accumulation of amyloidogenic α-synuclein inclusions in neurons and glia cells. Studies on synucleinopathies can take advantage of the development of new vertebrate models other than mammals. Moreover, synuclein expression in non-mammalian vertebrates contribute to clarify the physiological role of these proteins in the evolutionary perspective. In this paper, gene expression levels of α-, ß- and γ-synucleins have been analysed in the main organs of adult Xenopus laevis by qRT-PCR. Moreover, recombinant α-, ß- and γ-synucleins were produced to test the specificity of commercial antibodies against α-synuclein used in Western blot and immunohistochemistry. Finally, the secondary structure of Xenopus synucleins was evaluated by circular dichroism analysis. Results indicate Xenopus as a good model for studying synucleinopathies, and provide a useful background for future studies on synuclein functions and their evolution in vertebrates.


Subject(s)
Synucleinopathies , alpha-Synuclein , Animals , Mammals/metabolism , Protein Isoforms/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism
16.
Int J Biol Sci ; 18(8): 3167-3177, 2022.
Article in English | MEDLINE | ID: mdl-35637967

ABSTRACT

Gamma synuclein (SNCG) is a neuronal protein that is also aberrantly overexpressed in various types of human cancer. SNCG overexpression promotes cancer invasion and metastasis. However, the mechanisms that drive cancer metastasis upon SNCG expression remain elusive. Elucidation of the mechanisms underlying the promotion of cancer metastasis by SNCG may help discover therapeutic avenues for SNCG-overexpressed cancer. Here, we show that SNCG promotes transforming growth factor-ß (TGF-ß)-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation. Mechanistically, SNCG promotes p38MAPK phosphorylation by interacting with the MAPK kinase 3/6 (MKK3/6) and prevents their degradation. SNCG knockdown leads to a decrease in TGF-ß-induced phosphorylation of MKK3/6; and abrogates the induction of matrix metalloproteinase (MMP)-9 expression by TGF-ß and its target gene Twist1. Furthermore, p38MAPK inhibition abrogates the promotion of MMP-9 expression and cancer cell invasion by SNCG. Both p38MAPK and MMP inhibitors can suppress the promotion of cancer cell invasion by SNCG. Finally, overexpression of SNCG in liver cancer cells promotes lung metastasis, which can be suppressed by the p38MAPK inhibitor. Together, our data uncover a previously unknown role of SNCG in promoting TGF-ß-MKK3/6-p38MAPK signaling. This study highlights the critical role of p38MAPK in the promotion of cancer metastasis by SNCG, and indicates that p38MAPK inhibitor may serve as a potential therapeutic for SNCG-overexpressed cancer.


Subject(s)
MAP Kinase Signaling System , Neoplasm Metastasis , gamma-Synuclein , Humans , MAP Kinase Kinase 3 , MAP Kinase Kinase 6 , MAP Kinase Signaling System/genetics , Neoplasm Invasiveness , Neoplasm Proteins , Transforming Growth Factor beta/metabolism , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Biomed Res Int ; 2022: 6534626, 2022.
Article in English | MEDLINE | ID: mdl-35434126

ABSTRACT

Synuclein-γ (SNCG) and Snai1 play an important role in the occurrence and development of different types of malignant tumors. However, the association between SNCG and Snai1 and the effect of their combination on oral squamous cell carcinoma (OSCC) are unknown. The purpose of this study was to assess the expression of SNCG and Snai1 in OSCC tissues and their role in the genesis, development, diagnosis, and prognosis of OSCC. In this study, we first analyzed the Gene Expression Omnibus (GEO) database to determine the expression of SNCG and Snai1 in OSCC. And we also evaluated the correlation between the expression of SNCG and Snai1 and clinical pathological parameters in OSCC from The Cancer Genome Atlas (TCGA) database. Then, the expression of SNCG and Snai1 in OSCC and its adjacent tissues in our experimental cohort were detected by qRT-PCR, Western blot, and immunohistochemistry, and the relationship between their expression and clinical pathological parameters were analyzed. At the same time, the correlation between the expression of SNCG and Snai1 was analyzed from the TCGA, GEO database, and our experimental cohort. Next, the ROC curves were constructed to explore the diagnostic value of SNCG and Snai1 in OSCC. Finally, the survival curves were drawn, and the univariate and multivariate Cox regression analyses were performed to determine the prognostic value of SNCG and Snai1 in OSCC. The study found that SNCG and Snai1 were highly expressed in OSCC tissues. The expression of SNCG was related to the differentiation of OSCC, while that of Snai1 was related to the T stage, lymph node metastasis, clinical stage, and differentiation. Besides, the expression of SNCG in OSCC was positively correlated with that of Snai1. In addition, we also found that SNCG and Snai1 could well distinguish OSCC patients from normal people; especially, the combined diagnosis of SNCG and Snai1 had a better effect, with a specificity up to 96.67%. Moreover, SNCG-negative/Snai1-negative OSCC patients had the best prognosis. Multivariate analysis displayed that SNCG-positive expression was an independent risk factor for prognosis in OSCC patients. The results of this study strongly suggested that SNCG and Snai1 might have a cooperative effect in the occurrence and development of OSCC. They may become new markers for the diagnosis and prognosis of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Humans , Mouth Neoplasms/pathology , Neoplasm Proteins , Prognosis , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Squamous Cell Carcinoma of Head and Neck , Up-Regulation/genetics , gamma-Synuclein
18.
Tohoku J Exp Med ; 257(3): 225-239, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35444105

ABSTRACT

Long noncoding RNAs (LncRNAs) were reported to be implicated in the progression of gastric cancer (GC). This study aimed to explore the role of solute carrier family 25 member 21 antisense RNA 1 (SLC25A21-AS1) in radiosensitivity of GC cells. In the present study, reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed that the expression of SLC25A21-AS1 and synuclein gamma (SNCG) was downregulated in GC tissues and cells, while the expression of microRNA-15a-5p (miR-15a-5p) was upregulated in GC tissues and cells. The expression of SLC25A21-AS1 was elevated in GC cells after radiation treatment. SLC25A21-AS1 overexpression enhanced GC cell radiosensitivity, inhibited cell proliferation and promoted apoptosis. SLC25A21-AS1 overexpression also facilitated the DNA damage caused by radiation in GC cells. Mechanically, SLC25A21-AS1 interacted with miR-15a-5p and negatively regulated miR-15a-5p expression in GC cells. SNCG was directly targeted by miR-15a-5p at the 3' untranslated region (3'UTR). In GC tissues, the expression of SNCG was negatively correlated with that of miR-15a-5p, but was positively correlated with that of SLC25A21-AS1. Rescue assays revealed that SNCG silencing rescued the tumor-suppressive effect of overexpressed SLC25A21-AS1 on GC cells. The enhanced radiosensitivity caused by SLC25A21-AS1 overexpression was also reduced by SNCG knockdown. In conclusion, lncRNA SLC25A21-AS1 inhibits cell malignant behaviors and enhances cell radiosensitivity in GC by elevating SNCG expression.


Subject(s)
MicroRNAs , Neoplasm Proteins , RNA, Antisense , RNA, Long Noncoding , Stomach Neoplasms , gamma-Synuclein , 3' Untranslated Regions , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Proteins/metabolism , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Radiation Tolerance/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/radiotherapy , gamma-Synuclein/metabolism
19.
Cell Rep ; 39(2): 110675, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417693

ABSTRACT

α-synuclein, ß-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of ß-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that ß-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of ß-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that ß-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.


Subject(s)
Synaptic Vesicles , alpha-Synuclein , Animals , Mice , Presynaptic Terminals/metabolism , Synaptic Vesicles/metabolism , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , gamma-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...