Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.603
Filter
1.
Sci Rep ; 14(1): 20400, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223234

ABSTRACT

To select the core target (RAB13) in sepsis patients' peripheral blood and investigate its molecular functions and possible mechanisms. The peripheral blood of sepsis patients (n = 21) and healthy individuals (n = 9) within 24 h after admission were collected for RNA-seq, and differential gene screening was performed by iDEP online analysis software (P < 0.01; log2FC ≥ 2) and enrichment analysis, the potential core target RAB13 was screened out. The association between RAB13 expression and sepsis severity was explored using multiple datasets in the GEO database, and survival analysis was conducted. Subsequently, peripheral blood mononuclear cells (PBMCs) from sepsis and control groups were isolated, and 10 × single-cell sequencing was used to identify the main RAB13-expressing cell types. Finally, LPS was used to stimulate THP1 cells to construct a sepsis model to explore the function and possible mechanism of RAB13. We found that RAB13 was a potential core target, and RAB13 expression level was positively associated with sepsis severity and negatively correlated with survival based on multiple public datasets. A single-cell sequencing indicated that RAB13 is predominantly localized in monocytes. Cell experiments validated that RAB13 is highly expressed in sepsis, and the knockdown of RAB13 promotes the polarization of macrophages towards the M2 phenotype. This mechanism may be associated with the ECM-receptor interaction signaling pathway. The upregulation of RAB13 in sepsis patients promotes the polarization of M2-like macrophages and correlates positively with the severity of sepsis.


Subject(s)
Macrophages , Sepsis , rab GTP-Binding Proteins , Humans , Sepsis/metabolism , Sepsis/genetics , Sepsis/pathology , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Macrophages/metabolism , Male , Female , Middle Aged , THP-1 Cells , Aged , Case-Control Studies , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology
2.
Cell Death Dis ; 15(9): 655, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242574

ABSTRACT

Studies have indicated that RAB17 expression levels are associated with tumor malignancy, and RAB17 is more highly expressed in endometrial cancer (EC) tissues than in peritumoral tissues. However, the roles and potential mechanisms of RAB17 in EC remain undefined. The present study confirmed that the expression of RAB17 facilitates EC progression by suppressing cellular ferroptosis-like alterations. Mechanistically, RAB17 attenuated ferroptosis in EC cells by inhibiting transferrin receptor (TFRC) protein expression in a ubiquitin proteasome-dependent manner. Because EC is a blood-deprived tumor with a poor energy supply, the relationship between RAB17 and hypoglycemia was investigated. RAB17 expression was increased in EC cells incubated in low-glucose medium. Moreover, low-glucose medium limited EC cell ferroptosis and promoted EC progression through the RAB17-TFRC axis. The in vitro results were corroborated by in vivo studies and clinical data. Overall, the present study revealed that increased RAB17 promotes the survival of EC cells during glucose deprivation by inhibiting the onset of TFRC-dependent ferroptosis.


Subject(s)
Disease Progression , Endometrial Neoplasms , Ferroptosis , Receptors, Transferrin , rab GTP-Binding Proteins , Animals , Female , Humans , Mice , Antigens, CD , Cell Line, Tumor , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , Ferroptosis/genetics , Glucose/metabolism , Mice, Nude , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics
8.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39259305

ABSTRACT

How are Rab GTPases regulated during lysosome-related organelle (LRO) biogenesis? Li et al. (https://doi.org/10.1083/jcb.202402016) identify LYSMD proteins as crucial activators of Rab32-family GTPases in LRO development, shedding light on the previously ambiguous mechanisms governing Rab functionality in this process.


Subject(s)
Lysosomes , Organelle Biogenesis , rab GTP-Binding Proteins , Lysosomes/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Animals , Organelles/metabolism
9.
PLoS One ; 19(8): e0308982, 2024.
Article in English | MEDLINE | ID: mdl-39213285

ABSTRACT

Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 µM for Z. arabicum and 88.02 µM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 µM and 107.9 µM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.


Subject(s)
Breast Neoplasms , Mentha , Plant Extracts , Zinc Oxide , rab GTP-Binding Proteins , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mentha/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , Nanoparticles/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Metal Nanoparticles/chemistry
10.
Transl Vis Sci Technol ; 13(8): 21, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39133496

ABSTRACT

Purpose: Glaucoma is the primary cause of permanent vision loss worldwide. However, the pathogenesis of primary open-angle glaucoma (POAG), the main type of glaucoma, has not yet been completely understood. Methods: In our study, the POAG cohorts were obtained from the Gene Expression Omnibus (GEO) database (GSE45570). Biomarkers with diagnostic utility for POAG were identified through combining differentially expressed analysis, enrichment analysis, machine learning algorithms, and receiver operating characteristic (ROC) analysis. The regulatory networks (including a competing endogenous RNA (ceRNA) regulatory network and a small molecule compounds-mRNA network) were created. In addition, the Mendelian randomization (MR) analysis was used to identify exposures causally associated with POAG. Finally, the expression of the biomarkers was validated via real-time quantitative polymerase chain reaction (RT-qPCR). Results: The Gene Ontology (GO) items that the differentially expressed genes (DEGs) between POAG and control groups enriched were relevant to light stimulation and DNA methylation. A total of three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) were identified, which had diagnostic value for POAG patients. Besides, the ceRNA regulatory network contained 88 nodes and 93 edges, and a small molecule compounds-mRNA network included 66 nodes and 76 edges. The MR results indicated a causal association between DNA methylation GrimAge acceleration and POAG. Additionally, the results of RT-qPCR revealed that the expression trend of RAB8A was consistent with that of GSE45570. Conclusions: Taken together, this study provides three light stimulation-related biomarkers (RAB8A, PRG3, and SMAD3) for the diagnosis of POAG, providing scientifically valuable insights for further studies of POAG. Translational Relevance: Discovering biomarkers that possess diagnostic significance for POAG has the potential to offer new insights into the pathogenesis of POAG and present novel objectives for clinical intervention.


Subject(s)
Biomarkers , Computational Biology , Gene Regulatory Networks , Glaucoma, Open-Angle , Mendelian Randomization Analysis , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/diagnosis , Biomarkers/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism , Optic Nerve/metabolism , rab GTP-Binding Proteins/genetics , ROC Curve , Proteoglycans/genetics , Real-Time Polymerase Chain Reaction , DNA Methylation
11.
Cell Rep ; 43(8): 114598, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39126651

ABSTRACT

Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization. Extracellular signal-regulated kinase (ERK) signaling and ß2-integrin upregulation, early responses to TLR7 and TLR9 ligands, are defective in Rab27a deficiency. CpG-stimulated Rab27a-deficient neutrophils present increased tumor necrosis factor alpha (TNF-α) secretion and decreased secretion of a selected group of mediators, including interleukin (IL)-10. In vivo, CpG-challenged Rab27a-null mice show decreased production of type I interferons (IFNs) and IFN-γ, and the IFN-α secretion defect is confirmed in Rab27a-null plasmacytoid dendritic cells. Our findings have significant implications for immunodeficiency, inflammation, and CpG adjuvant vaccination.


Subject(s)
Cytokines , Toll-Like Receptor 9 , rab27 GTP-Binding Proteins , Animals , rab27 GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins/genetics , Mice , Cytokines/metabolism , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/deficiency , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/deficiency , rab GTP-Binding Proteins/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics , Neutrophils/metabolism , Neutrophils/immunology , Endosomes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Tumor Necrosis Factor-alpha/metabolism , Nucleic Acids/metabolism , Signal Transduction , Interferon-gamma/metabolism , Membrane Glycoproteins
12.
Front Immunol ; 15: 1403008, 2024.
Article in English | MEDLINE | ID: mdl-39192986

ABSTRACT

Background: As one of the most common cancer, colorectal cancer (CRC) is with high morbidity and mortality. Peritoneal metastasis (PM) is a fatal state of CRC, and few patients may benefit from traditional therapies. There is a complex interaction between PM and immune cell infiltration. Therefore, we aimed to determine biomarkers associated with colorectal cancer peritoneal metastasis (CRCPM) and their relationship with immune cell infiltration. Methods: By informatic analysis, differently expressed genes (DEGs) were selected and hub genes were screened out. RAB13, one of the hub genes, was identificated from public databases and validated in CRC tissues. The ESTIMATE, CEBERSORT and TIMER algorithms were applied to analyze the correlation between RAB13 and immune infiltration in CRC. RAB13's expression in different cells were analyzed at the single-cell level in scRNA-Seq. The Gene Set Enrichment Analysis (GSEA) was performed for RAB13 enrichment and further confirmed. Using oncoPredict algorithm, RAB13's impact on drug sensitivity was evaluated. Results: High RAB13 expression was identified in public databases and led to a poor prognosis. RAB13 was found to be positively correlated with the macrophages and other immune cells infiltration and from scRNA-Seq, RAB13 was found to be located in CRC cells and macrophages. GSEA revealed that high RAB13 expression enriched in a various of biological signaling, and oncoPredict algorithm showed that RAB13 expression was correlated with paclitaxel sensitivity. Conclusion: Our study indicated clinical role of RAB13 in CRC-PM, suggesting its potential as a therapeutic target in the future.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Peritoneal Neoplasms , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Male , Gene Expression Profiling
13.
Nat Commun ; 15(1): 6824, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122694

ABSTRACT

MICAL proteins represent a unique family of actin regulators crucial for synapse development, membrane trafficking, and cytokinesis. Unlike classical actin regulators, MICALs catalyze the oxidation of specific residues within actin filaments to induce robust filament disassembly. The potent activity of MICALs requires tight control to prevent extensive damage to actin cytoskeleton. However, the molecular mechanism governing MICALs' activity regulation remains elusive. Here, we report the cryo-EM structure of MICAL1 in the autoinhibited state, unveiling a head-to-tail interaction that allosterically blocks enzymatic activity. The structure also reveals the assembly of C-terminal domains via a tripartite interdomain interaction, stabilizing the inhibitory conformation of the RBD. Our structural, biochemical, and cellular analyses elucidate a multi-step mechanism to relieve MICAL1 autoinhibition in response to the dual-binding of two Rab effectors, revealing its intricate activity regulation mechanisms. Furthermore, our mutagenesis study of MICAL3 suggests the conserved autoinhibition and relief mechanisms among MICALs.


Subject(s)
Actins , Cryoelectron Microscopy , Mixed Function Oxygenases , Humans , Actins/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/chemistry , Protein Binding , Actin Cytoskeleton/metabolism , Models, Molecular , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Protein Domains , Calponins
14.
Oncogene ; 43(37): 2768-2780, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138263

ABSTRACT

Peritoneal metastasis is one of the most common risk factors contributing to the poor prognosis of gastric cancer. We previously reported that extracellular vesicles from gastric cancer cells could facilitate peritoneal metastasis. However, their impact on gastric cancer-induced peritoneal metastasis under hypoxic conditions remains unclear. This study aims to elucidate how hypoxia-resistant gastric cancer cell-derived extracellular vesicles affect the peritoneal metastasis of normoxic gastric cancer cells. Proteomic analysis revealed elevated levels of Caveolin1 and Laminin ß2 in hypoxia-resistant gastric cancer cells and their corresponding extracellular vesicles. Importantly, Caveolin1 was found to play a central role in mediating Laminin ß2 sorting into extracellular vesicles derived from hypoxia-resistant gastric cancer cells, and subsequently, extracellular vesicle-associated Laminin ß2 promoted peritoneal metastasis in normoxic gastric cancer cells by activating the AKT pathway. Further investigation confirmed that Caveolin1 activation by Rho-related Coiled-coil kinase 1-mediated phosphorylation of Y14 residue is a key factor facilitating Laminin ß2 sorting into extracellular vesicles. Moreover, Y14 phosphorylated- Caveolin1 enhanced Laminin ß2 sorting by activating Rab11. Finally, our study demonstrated that a combined assessment of plasma extracellular vesicle-associated Caveolin1 and extracellular vesicle-associated Laminin ß2 could provide an accurate predictive tool for peritoneal metastasis occurrence in gastric cancer.


Subject(s)
Caveolin 1 , Extracellular Vesicles , Peritoneal Neoplasms , Stomach Neoplasms , rab GTP-Binding Proteins , rho-Associated Kinases , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Caveolin 1/metabolism , Caveolin 1/genetics , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/metabolism , Animals , rho-Associated Kinases/metabolism , Extracellular Vesicles/metabolism , Mice , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Line, Tumor , Signal Transduction , Male , Female
15.
Pediatr Neurol ; 160: 45-53, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39181022

ABSTRACT

BACKGROUND: GTPases of the Rab family are important orchestrators of membrane trafficking, and their dysregulation has been linked to a variety of neuropathologies. In 2017, we established a causal link between RAB11A variants and developmental and epileptic encephalopathy. In this study, we expand the phenotype of RAB11A-associated neurodevelopmental disorder and explore genotype-phenotype correlations. METHODS: We assessed 16 patients with pathogenic or likely pathogenic RAB11A variants, generally de novo, heterozygous missense variants. One individual had a homozygous nonsense variant, although concomitant with a pathogenic LAMA2 variant, which made their respective contributions to the phenotype difficult to discriminate. RESULTS: We reinforce the finding that certain RAB11A missense variants lead to intellectual disability and developmental delays. Other clinical features might include gait disturbances, hypotonia, magnetic resonance imaging abnormalities, visual anomalies, dysmorphisms, early adrenarche, and obesity. Epilepsy seems to be less common and linked to variants outside the binding sites. Individuals with variants in the binding sites seem to have a more multisystemic, nonepileptic phenotype. CONCLUSIONS: Similar to other Rab-related disorders, RAB11A-associated neurodevelopmental disorder can also impact gait, tonus, brain anatomy and physiology, vision, adrenarche, and body weight and structure. Epilepsy seems to affect the minority of patients with variants outside the binding sites.


Subject(s)
Genetic Association Studies , Neurodevelopmental Disorders , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/genetics , Male , Child , Female , Neurodevelopmental Disorders/genetics , Child, Preschool , Adolescent , Cohort Studies , Mutation, Missense , Phenotype , Intellectual Disability/genetics , Intellectual Disability/diagnostic imaging , Epilepsy/genetics , Epilepsy/physiopathology , Epilepsy/diagnostic imaging , Infant , Developmental Disabilities/genetics , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/etiology
16.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125997

ABSTRACT

The transmembrane protein ß-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The ß-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic ß-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.


Subject(s)
Amyloid beta-Protein Precursor , Drosophila Proteins , Neuromuscular Junction , rab GTP-Binding Proteins , Animals , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Synaptic Transmission , Synapses/metabolism , Receptors, Glutamate/metabolism , Receptors, Glutamate/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , Membrane Proteins , Nerve Tissue Proteins , Homeodomain Proteins , Receptors, Ionotropic Glutamate
17.
EMBO J ; 43(18): 3948-3967, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103493

ABSTRACT

Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.


Subject(s)
Amino Acids , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Protein Serine-Threonine Kinases , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Amino Acids/metabolism , Phosphorylation , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , HEK293 Cells , Signal Transduction , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology
18.
Dev Cell ; 59(17): 2287-2301.e6, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39111309

ABSTRACT

Autophagy is a universal degradation system in eukaryotic cells. In plants, although autophagosome biogenesis has been extensively studied, the mechanism of how autophagosomes are transported to the vacuole for degradation remains largely unexplored. In this study, we demonstrated that upon autophagy induction, Arabidopsis homotypic fusion and protein sorting (HOPS) subunit VPS41 converts first from condensates to puncta, then to ring-like structures, termed VPS41-associated phagic vacuoles (VAPVs), which enclose autophagy-related gene (ATG)8s for vacuolar degradation. This process is initiated by ADP ribosylation factor (ARF)-like GTPases ARLA1s and occurs concurrently with autophagy progression through coupling with the synaptic-soluble N-ethylmaleimide-sensitive factor attachment protein rmleceptor (SNARE) proteins. Unlike in other eukaryotes, autophagy degradation in Arabidopsis is largely independent of the RAB7 pathway. By contrast, dysfunction in the condensates-to-VAPVs conversion process impairs autophagosome structure and disrupts their vacuolar transport, leading to a significant reduction in autophagic flux and plant survival rate. Our findings suggest that the conversion pathway might be an integral part of the autophagy program unique to plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagosomes , Autophagy , Vacuoles , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Vacuoles/metabolism , Autophagosomes/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , SNARE Proteins/metabolism , SNARE Proteins/genetics , rab7 GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics
20.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39084876

ABSTRACT

Phagocytosis is an important immune response that protects the host from pathogen invasion. Rit1 GTPase is known to be involved in diverse cellular processes. However, its role in FcγR-mediated phagocytosis remains unclear. Our live-cell imaging analysis revealed that Rit1 was localized to the membranes of F-actin-rich phagocytic cups in RAW264 macrophages. Rit1 knockout and expression of the GDP-locked Rit1 mutant suppressed phagosome formation. We also found that TBC1D10B, a GAP for the Rab family GTPases, colocalizes with Rit1 in the membranes of phagocytic cups. Expression and knockout studies have shown that TBC1D10B decreases phagosome formation in both Rab-GAP activity-dependent and -independent manners. Notably, the expression of the GDP-locked Rit1 mutant or Rit1 knockout inhibited the dissociation of TBC1D10B from phagocytic cups. In addition, the expression of the GTP-locked Rit1 mutant promoted the dissociation of TBC1D10B in phagocytic cups and restored the rate of phagosome formation in TBC1D10B-expressing cells. These data suggest that Rit1-TBC1D10B signaling regulates FcγR-mediated phagosome formation in macrophages.


Subject(s)
GTPase-Activating Proteins , Macrophages , Phagocytosis , Phagosomes , Receptors, IgG , Signal Transduction , Animals , Mice , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Macrophages/metabolism , Phagocytosis/genetics , Phagosomes/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , RAW 264.7 Cells , Receptors, IgG/metabolism , ras Proteins/genetics , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL