Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Microbiol ; 81(4): 102, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376809

RESUMEN

In this study, our aim was to elucidate the relationship between Anoxybacillus rupiensis DSM 17127T and Anoxybacillus geothermalis GSsed3T through whole-genome phylogenetic analysis. The obtained 16S rRNA gene sequence from the genome of A. rupiensis DSM 17127T exhibited a 99.8% similarity with A. geothermalis GSsed3T. In the phylogenetic trees constructed using whole-genome sequences and 16S rRNA gene sequences, A. rupiensis DSM 17127T and A. geothermalis GSsed3T were observed to form a clade, indicating a close relationship between them. Moreover, the average amino acid identity, average nucleotide identity, and digital DNA-DNA hybridization values calculated between A. rupiensis DSM 17127T and A. geothermalis GSsed3T exceeded the threshold values typically used for species demarcation. Furthermore, the phylogenomic analysis based on the core genome of the strains in question provided additional support for the formation of a monophyletic clade by A. rupiensis DSM 17127T and A. geothermalis GSsed3T. Most phenotypic and chemotaxonomic features between both strains were almost identical except for a few exceptions. These findings suggest that both strains should be classified as belonging to the same species, and we propose that A. geothermalis GSsed3T is a later heterotypic synonym of A. rupiensis DSM 17127T.


Asunto(s)
Anoxybacillus , ADN , Filogenia , ARN Ribosómico 16S/genética
2.
Braz J Microbiol ; 54(2): 725-737, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890351

RESUMEN

Detergent-compatible enzymes are the new trend followed by most in the detergent industry. Cellulases, lipases, proteases, and amylases are among the enzymes frequently used in detergents. Detergent-compatible enzymes can be obtained from many organisms, but the stability, cheapness, and availability of microbial enzymes make them preferable in industrial areas. In the present study, soil samples contaminated with household waste were collected from different regions of Trabzon (Turkey) for amylase-, cellulase-, protease-, and lipase-producing bacteria. A total of 55 bacterial isolates differing in colony morphology were purified from the samples and 25 of the isolates gave positive results in enzyme screening. The enzyme screening experiments revealed that 10 isolates produced amylase, 9 produced lipase, 7 produced cellulase, and 6 produced protease. While 2 isolates showed both protease and lipase activity, for 2 different isolates cellulose and amylase activity were detected together. It was also observed that one isolate, C37PLCA, produced all four enzymes. The morphological, physiological, and biochemical analyses of the bacteria from which we obtained the enzymes were performed and species close to them were determined using 16S rRNA sequences. Based on the results obtained, our enzymes show tremendous promise for the detergent industry.


Asunto(s)
Celulasa , Celulasas , Péptido Hidrolasas , Lipasa , Detergentes/química , Amilasas , ARN Ribosómico 16S/genética , Proteínas Bacterianas/química , Bacterias
3.
Antonie Van Leeuwenhoek ; 116(5): 415-423, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36732410

RESUMEN

In the present study, we aim to clarify the taxonomic positions of Anoxybacillus salavatliensis DSM 22626T and Anoxybacillus gonensis G2T by using whole genome phylogenetic analysis, biochemical and chemotaxonomic characteristics. The genome sequences of A. salavatliensis DSM 22626T was not available in any database, so it was sequenced in this study. In phylogenetic trees drawn using whole genome sequences and 16S rRNA gene sequences, A. salavatliensis DSM 22626T and A. gonensis G2T clade together and showed high sequence similarity (99.3%) based on 16S rRNA gene. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values between A. salavatliensis DSM 22626T and A. gonensis G2T were found to be greater than the threshold values for species demarcation. Further, the phylogenomic analysis based on the core genome of the strains under study confirmed that A. salavatliensis DSM 22626T and A. gonensis G2T formed a monophyletic clade. Most phenotypic and chemotaxonomic features between both strains were almost identical except for a few exceptions. The present results show that A. salavatliensis DSM 22626T is a later heterotypic synonym of A. gonensis G2T.


Asunto(s)
ADN , Ácidos Grasos , ARN Ribosómico 16S/genética , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Hibridación de Ácido Nucleico , Técnicas de Tipificación Bacteriana , Ácidos Grasos/análisis
4.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36477792

RESUMEN

Strain GKT was isolated from the Kumbet plateu of Giresun in Turkey. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain GKT belonged to genus Janthinobacterium and 16S rRNA gene sequence similarities with all type strains of the genus Janthinobacterium were 98.89%-99.78%. The calculated pairwise average nucleotide identity (ANI) values between strain GKT and all type strains of Janthinobacterium species were in the range of 79.8%-93.2%. In addition, digital DNA-DNA hybridization (dDDH) values were in the range of 23.0%-51.7%. Major fatty acids are C10:03OH, C12:0, C16:1ω7c, C16:0, and C18:1ω7c, and polar lipids included phosphatidylethanolamine, phosphatidylglycerol, also one unidentified phospholipid and one unidentified aminophospholipid. The respiratory quinone of strain GKT was determinated to be Q-8. The genome sizes of strain GKT was 6 197 538 bp with 63.16% G + C ratio. Strain GKT is Gram-stain-negative, aerobic, rod-shaped, and motile. A violet pigment was produced by strain GKT. The crude violacein pigments were separated into three diferent bands on a TLC sheet. Then violacein and deoxyviolacein were purifed by vacuum liquid column chromatography and identifed by NMR spectroscopy. The antimicrobial activities of purifed violacein and deoxyviolacein were screened for seven microorganisms. Based on the results of the morphological, biochemical, physiological, phylogenetic, and genomic characteristics, we propose classifying the strain GKT as representative of a novel species of the genus Janthinobacterium, for which the name Janthinobacterium kumbetense sp. nov. is proposed (GKT = LMG 32662T = DSM 11423T).


Asunto(s)
Antiinfecciosos , Oxalobacteraceae , Agua , Filogenia , ARN Ribosómico 16S/genética , Turquía , Análisis de Secuencia de ADN , Ubiquinona/química , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Ácidos Grasos/química , Oxalobacteraceae/genética
5.
Arch Microbiol ; 204(10): 613, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087143

RESUMEN

In this study, we aimed to clarify the taxonomic positions of Anoxybacillus kamchatkensis DSM 14988T and Anoxybacillus ayderensis AB04T using whole-genome phylogenetic analysis, biochemical and chemotaxonomic characteristics. In phylogenetic trees drawn using whole-genome sequences and 16S rRNA gene sequences, A. kamchatkensis DSM 14988T and A. ayderensis AB04T clade together and showed high sequence similarity (99.6%) based on 16S rRNA gene. The average amino acid identity, average nucleotide identity and digital DNA-DNA hybridization values between A. kamchatkensis DSM 14988T and A. ayderensis AB04T were found to be greater than the threshold values for species demarcation. Most phenotypic and chemotaxonomic features between both species were almost identical except for a few exceptions. The present results show that A. kamchatkensis DSM 14988T is a later heterotypic synonym of A. ayderensis AB04T.


Asunto(s)
ARN Ribosómico 16S , Anoxybacillus , ADN Bacteriano/química , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
World J Microbiol Biotechnol ; 38(9): 161, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834025

RESUMEN

A violacein-producing bacterium was isolated from a mud sample collected near a hot spring on Kümbet Plateau in Giresun Province and named the GK strain. According to the phylogenetic tree constructed using 16S rRNA gene sequence analysis, the GK strain was identified and named Janthinobacterium sp. GK. The crude violacein pigments were separated into three different bands on a TLC sheet. Then violacein and deoxyviolacein were purified by vacuum liquid column chromatography and identified by NMR spectroscopy. According to the inhibition studies, the HIV-1 RT inhibition rate of 1 mM violacein from the GK strain was 94.28% and the CoV-2 spike RBD:ACE2 inhibition rate of 2 mM violacein was 53%. In silico studies were conducted to investigate the possible interactions between violacein and deoxyviolacein and three reference molecules with the target proteins: angiotensin-converting enzyme 2 (ACE2), HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain. Ligand violacein binds strongly to the receptor ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -9.94 kcal/mol, -9.32 kcal/mol, and -8.27 kcal/mol, respectively. Deoxyviolacein strongly binds to the ACE2, HIV-1 reverse transcriptase, and SARS-CoV-2 spike receptor binding domain with a binding energy of -10.38 kcal/mol, -9.50 kcal/mol, and -8.06 kcal/mol, respectively. According to these data, violacein and deoxyviolacein bind to all the receptors quite effectively. SARS-CoV-2 spike protein and HIV-1-RT inhibition studies with violacein and deoxyviolacein were performed for the first time in the literature.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , VIH-1 , Indoles , Glicoproteína de la Espiga del Coronavirus , COVID-19/metabolismo , COVID-19/virología , VIH-1/metabolismo , Indoles/metabolismo , Indoles/farmacología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Filogenia , Unión Proteica , ARN Ribosómico 16S , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Arch Microbiol ; 204(7): 439, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768663

RESUMEN

In the present study, we attempted to clarify the taxonomic positions of Anoxybacillus karvacharensis K1T, Anoxybacillus kestanbolensis NCIMB 13971T, Anoxybacillus flavithermus subsp. yunnanensis CCTCC AB2010187T, and Anoxybacillus tengchongensis DSM 23211T using whole-genome phylogenetic analysis. The genome sequence of A. kestanbolensis NCIMB13971T was not available in any database, so it was sequenced in this study. The 16S rRNA gene sequence obtained from the genome of A. kestanbolensis NCIMB13971T had 99.93% similarity with A. karvacharensis K1T. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (DDH) values between A. karvacharensis K1T and A. kestanbolensis NCIMB13971T and between A. flavithermus subsp. yunnanensis CCTCCAB 2010187T and A. tengchongensis DSM 23211T were greater than the threshold values for species demarcation. The present results indicate that A. karvacharensis K1T is a later heterotypic synonym of A. kestanbolensis NCIMB13971T; A. flavithermus subsp. yunnanensis CCTCCAB 2010187T is a later heterotypic synonym of A. tengchongensis DSM 23211T.


Asunto(s)
Anoxybacillus , Anoxybacillus/genética , Anoxybacillus/metabolismo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/química , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN
8.
Water Sci Technol ; 85(1): 420-432, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35050893

RESUMEN

Lignin is a major by-product of pulp and paper industries, and is resistant to depolymerization due to its heterogeneous structure. Degradation of lignin can be achieved by the use of potential lignin-degrading bacteria. The current study was designed to evaluate the degradation efficiency of newly isolated Bacillus altitudinis SL7 from pulp and paper mill effluent. The degradation efficiency of B. altitudinis SL7 was determined by color reduction, lignin content, and ligninolytic activity from degradation medium supplemented with alkali lignin (3 g/L). B. altitudinis SL7 reduced color and lignin content by 26 and 44%, respectively, on the 5th day of incubation, as evident from the maximum laccase activity. Optimum degradation was observed at 40 °C and pH 8.0. FT-IR spectroscopy and GC-MS analysis confirmed lignin degradation by emergence of the new peaks and identification of low-molecular-weight compounds in treated samples. The identified compounds such as vanillin, 2-methyoxyhenol, 3-methyl phenol, oxalic acid and ferulic acid suggested the degradation of coniferyl and sinapyl groups of lignin. Degradation efficiency of B. altitudinis SL7 towards high lignin concentration under alkaline pH indicated the potential application of this isolate in biological treatment of the lignin-containing effluents.


Asunto(s)
Residuos Industriales , Lignina , Bacillus , Biodegradación Ambiental , Papel , Espectroscopía Infrarroja por Transformada de Fourier
9.
Turk J Biol ; 45(4): 530-548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803452

RESUMEN

Propolis is a multi-functional bee product rich in polyphenols. In this study, the inhibitory effect of Anatolian propolis against SARS-coronavirus-2 (SARS-CoV-2) was investigated in vitro and in silico. Raw and commercial propolis samples were used, and both samples were found to be rich in caffeic acid, p-coumaric acid, ferulic acid, t-cinnamic acid, hesperetin, chrysin, pinocembrin, and caffeic acid phenethyl ester (CAPE) at HPLC-UV analysis. Ethanolic propolis extracts (EPE) were used in the ELISA screening test against the spike S1 protein (SARS-CoV-2): ACE-2 interaction for in vitro study. The binding energy values of these polyphenols to the SARS-CoV-2 spike and ACE-2 protein were calculated separately with a molecular docking study using the AutoDock 4.2.6 program. In addition, the pharmacokinetics and drug-likeness properties of these eight polyphenols were calculated according to the SwissADME tool. The binding energy value of pinocembrin was highest in both receptors, followed by chrysin, CAPE, and hesperetin. Based on the in silico modeling and ADME (absorption, distribution, metabolism, and excretion) behaviors of the eight polyphenols, the compounds exhibited the potential ability to act effectively as novel drugs. The findings of both studies showed that propolis has a high inhibitory potential against the Covid-19 virus. However, further studies are now needed.

10.
Enzyme Microb Technol ; 151: 109917, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649688

RESUMEN

Lignin is a major byproduct of pulp and paper industries, which is resistant to depolymerization due to its heterogeneous structure. The enzymes peroxidases can be utilized as potent bio-catalysts to degrade lignin. In the current study, an Efeb gene of 1251bp encoding DyP-type peroxidase from Bacillus sp. strain BL5 (DyPBL5) was amplified, cloned into a pET-28a (+) vector and expressed in Escherichia coli BL21 (DE3) cells. A 46 kDa protein of DyPBL5 was purified through ion-exchange chromatography. Purified DyPBL5 was active at wide temperature (25-50 °C) and pH (3.0-8.0) range with optimum activity at 35 °C and pH 5.0. Effects of different chemicals on DyPBL5 were determined. The enzyme activity was strongly inhibited by SDS, DDT and ß-mercaptoethanol, whereas stimulated in the presence of organic solvents such as methanol and ethanol. The kinetic parameters were determined and Km, Vmax and Kcat values were 1.06 mM, 519.75 µmol/min/mg and 395 S̶ 1, respectively. Docking of DyPBL5 with ABTS revealed that, Asn 244, Arg 339, Asp 383 and Thr 389 are putative amino acids, taking part in the oxidation of ABTS. The recombinant DyPBL5 resulted in the reduction of lignin contents up to 26.04 %. The SEM and FT-IR analysis of test samples gave some indications about degradation of lignin by DyPBL5. Various low molecular weight lignin degradation products were detected by analyzing the samples through gas chromatography mass spectrometry. High catalytic efficiency and lignin degradation rate make DyPBL5 an ideal bio-catalyst for remediation of lignin-contaminated sites.


Asunto(s)
Bacillus , Lignina , Bacillus/genética , Clonación Molecular , Peroxidasas/genética , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA