Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(3): e0264408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245302

RESUMEN

Bioturbators shape their environment with considerable consequences for ecosystem processes. However, both the composition and the impact of bioturbator communities may change along climatic gradients. For burrowing animals, their abundance and composition depend on climatic and other abiotic components, with ants and mammals dominating in arid and semiarid areas, and earthworms in humid areas. Moreover, the activity of burrowing animals is often positively associated with vegetation cover (biotic component). These observations highlight the need to understand the relative contributions of abiotic and biotic components in bioturbation in order to predict soil-shaping processes along broad climatic gradients. In this study, we estimated the activity of animal bioturbation by counting the density of holes and the quantity of bioturbation based on the volume of soil excavated by bioturbators along a gradient ranging from arid to humid in Chile. We distinguished between invertebrates and vertebrates. Overall, hole density (no/ 100 m2) decreased from arid (raw mean and standard deviation for invertebrates: 14 ± 7.8, vertebrates: 2.8 ± 2.9) to humid (invertebrates: 2.8 ± 3.1, vertebrates: 2.2 ± 2.1) environments. However, excavated soil volume did not follow the same clear geographic trend and was 300-fold larger for vertebrates than for invertebrates. The relationship between bioturbating invertebrates and vegetation cover was consistently negative whereas for vertebrates both, positive and negative relationships were determined along the gradient. Our study demonstrates complex relationships between climate, vegetation and the contribution of bioturbating invertebrates and vertebrates, which will be reflected in their impact on ecosystem functions.


Asunto(s)
Ecosistema , Invertebrados , Animales , Chile , Mamíferos , Suelo , Vertebrados
2.
Sci Rep ; 11(1): 13057, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158516

RESUMEN

The weathering front is the boundary beneath Earth's surface where pristine rock is converted into weathered rock. It is the base of the "critical zone", in which the lithosphere, biosphere, and atmosphere interact. Typically, this front is located no more than 20 m deep in granitoid rock in humid climate zones. Its depth and the degree of rock weathering are commonly linked to oxygen transport and fluid flow. By drilling into fractured igneous rock in the semi-arid climate zone of the Coastal Cordillera in Chile we found multiple weathering fronts of which the deepest is 76 m beneath the surface. Rock is weathered to varying degrees, contains core stones, and strongly altered zones featuring intensive iron oxidation and high porosity. Geophysical borehole measurements and chemical weathering indicators reveal more intense weathering where fracturing is extensive, and porosity is higher than in bedrock. Only the top 10 m feature a continuous weathering gradient towards the surface. We suggest that tectonic preconditioning by fracturing provided transport pathways for oxygen to greater depths, inducing porosity by oxidation. Porosity was preserved throughout the weathering process, as secondary minerals were barely formed due to the low fluid flow.

3.
J Acoust Soc Am ; 139(4): 1914, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27106338

RESUMEN

Bats are able to identify obstacles and prey objects based exclusively on acoustic information acquired via echolocation. To assess the echo information potentially available to the trawling bat Noctilio leporinus, prey objects were ensonified with artificial bat calls and deduced echo target strengths (TS) of the reflected signals. The artificial calls consisted either of constant frequency (CF) or frequency modulated (FM) sounds. Detection distances were calculated for call intensities of N. leporinus emitted in the field and in confined space. Measurements of a transient target consisting of a brief water splash and subsequently expanding water ripples revealed that concentrically expanding water ripples can provide sufficiently loud echoes to be detected by trawling bats. Experiments with stationary targets revealed differences in TS depending on the type of signal used (CF or FM). A calculated maximum detection distance between 4.5 and 13.7 m for all measured targets indicates that prey detection in this very loud calling species occurs much earlier than suggested by estimations based on modifications in echolocation or flight behavior.


Asunto(s)
Percepción Auditiva , Quirópteros/psicología , Ecolocación , Conducta Alimentaria , Vuelo Animal , Conducta Predatoria , Agua , Estimulación Acústica/métodos , Acústica , Animales , Localización de Sonidos , Espectrografía del Sonido , Propiedades de Superficie , Factores de Tiempo
4.
Front Physiol ; 4: 96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675352

RESUMEN

Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA