Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 52(6): 1127-1138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573494

RESUMEN

The effectiveness of wetlands in sequestering nutrients and improving water quality relies on a suite of abiotic and biotic conditions. To more fully understand the restraints on nutrient removal, especially salinity and plant cover, we created field-scale mesocosms and monitored nutrient sequestration with nutrient additions and isotopic pool dilutions over 2 years in two wetlands near the Great Salt Lake in Utah. Surprisingly, we found no differences in nutrient removal with plant removal, increased salinity, and altered ambient nutrient concentrations, suggesting functional redundancy in associated primary producers. When submerged aquatic vegetation was removed, chlorophyll α concentration (0.1-9.0 µg/L) increased while nitrogen (N) and phosphorus (P) assimilation remained the same as phytoplankton occupied the open niche space. We did find ammonium concentrations to be inversely related to nitrate assimilation-as the ammonium concentration increased, nitrate assimilation decreased, suggesting preferential uptake of ammonium. Last, in our high N and P treatment mesocosms, the nitrate dramatically declined from 43.9 mg/L to background levels (<0.1 mg/L) within 1 week, showing a high potential for N remediation in these wetlands.


Asunto(s)
Compuestos de Amonio , Nitratos , Humedales , Nitrógeno , Fósforo , Nutrientes
2.
Environ Microbiol ; 24(12): 5690-5706, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273269

RESUMEN

In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra-dominated-by-lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment-associated fractions and in higher-order reaches during snowmelt. Families Chthonomonadaceae, Pyrinomonadaceae, and Xiphinematobacteraceae were abundantly different across seasons, while Flavobacteriaceae and Microscillaceae were abundantly different between free-floating and sediment-associated fractions. Physicochemical data suggested there was high iron (Fe+ ) production (alpine catchment); Fe+ production and chloride (Cl- ) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4 + ) production (lake catchment). In tundra landscapes, these 'hot spots' of Fe+ production and Cl- removal accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton-mineral relations stabilized communities in free-flowing reaches, but bacterioplankton-nutrient relations stabilized those punctuated by lakes.


Asunto(s)
Lagos , Plancton , Humanos , Regiones Árticas , Lagos/química , Bacterias/genética , Fósforo , Organismos Acuáticos
3.
Environ Microbiol ; 24(11): 5450-5466, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35844197

RESUMEN

Anthropogenic long-term nitrogen (N) deposition may dramatically impact biocrusts due to the overarching N limitation of soil biota in deserts. Even low levels of N may reach a critical loading threshold altering biocrust constituents and function. To identify the impact of chronic and continuous low levels of N deposition on biocrusts, we created a realistic gradient mirroring anthropogenic N addition rate (2:1 NH4 + : NO3 - rates: 0.3, 0.5, 1.0, 1.5, 3 g N m-2  yr-1 ) and measured the response of bacteria and fungi within cyanobacterial-dominated biocrusts over 8 years in a temperate desert, the Gurbantunggut Desert, China. We found that once N deposition reached 1.5 g N m-2  yr-1 biocrust bacterial communities, including diazotrophs, were altered while no such tipping point existed for fungi. Above the threshold, bacterial richness was enhanced, the relative abundance of Chloroflexi, FBP and Gemmatimonadetes was elevated, and diazotrophs shifted from being dominated by Nostocaceae and Scytonemataceae (Cyanobacteria) to free-living Bradyrhizobiaceae (Alphaproteobacteria). Alternatively, the relative recovery of a few fungal species within the Lecanorales, Pleosporales and Verrucariales became either enriched or diminished due to N deposition. The chronic addition of N resulted in a dense and interconnected bacterial co-occurrence network that accentuated a functional shift from networks dominated by phototrophic species within the Nostocaceae, Xenococcaceae, Phormidiaceae and Scytonemataceae (Cyanobacteria) to ammonia-oxidizing species within the Nitrosomonadaceae (Betaproteobacteria) and nitrifying bacteria [i.e. Nitrospiraceae (Nitrospirae)]. Based on structural equation models, the effects of N additions on biocrust constituents were imposed through indirect effects on pH, soil electrical conductivity and ammonium concentrations. In summary, biocrust constituents are generally insensitive to chronic low levels of N depositions until rates reach above 1.5 g N m-2  yr-1 with diazotrophs being the most sensitive biocrust constituents followed by bacteria and finally fungi. Ultimately once the threshold is reached N deposition favours biocrust constituents utilizing inorganic N and other C sources over relying on phototrophic and/or N-fixing cyanobacteria for C and N.


Asunto(s)
Cianobacterias , Clima Desértico , Suelo/química , Microbiología del Suelo , Hongos/genética , Ecosistema
4.
Artículo en Inglés | MEDLINE | ID: mdl-34567579

RESUMEN

SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of metainformation to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what metainformation should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting.

5.
Microorganisms ; 9(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34442632

RESUMEN

The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targeted molecular and culture-based approaches.

6.
PLoS One ; 16(8): e0255411, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411107

RESUMEN

Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10-17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.


Asunto(s)
Ciencia Ciudadana , Ecosistema , Ríos , Nitrógeno , Fósforo , Calidad del Agua
7.
Sci Total Environ ; 775: 145790, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33618308

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is shed in feces and the viral ribonucleic acid (RNA) is detectable in wastewater. A nine-week wastewater epidemiology study of ten wastewater facilities, serving 39% of the state of Utah or 1.26 M individuals was conducted in April and May of 2020. COVID-19 cases were tabulated from within each sewershed boundary. RNA from SARS-CoV-2 was detectable in 61% of 126 wastewater samples. Urban sewersheds serving >100,000 individuals and tourist communities had higher detection frequencies. An outbreak of COVID-19 across two communities positively correlated with an increase in wastewater SARS-CoV-2 RNA, while a decline in COVID-19 cases preceded a decline in RNA. SARS-CoV-2 RNA followed a first order decay rate in wastewater, while 90% of the RNA was present in the liquid phase of the influent. Infiltration and inflow, virus decay and sewershed characteristics should be considered during correlation analysis of SAR-CoV-2 with COVID-19 cases. These results provide evidence of the utility of wastewater epidemiology to assist in public health responses to COVID-19.


Asunto(s)
COVID-19 , Coronavirus , Costo de Enfermedad , Humanos , ARN Viral , SARS-CoV-2 , Utah , Aguas Residuales
8.
Front Microbiol ; 11: 491425, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324353

RESUMEN

Stream bacterioplankton communities, a crucial component of aquatic ecosystems and surface water quality, are shaped by environmental selection (i.e., changes in taxa abundance associated with more or less favorable abiotic conditions) and passive dispersal (i.e., organisms' abundance and distribution is a function of the movement of the water). These processes are a function of hydrologic conditions such as residence time and water chemistry, which are mediated by human infrastructure. To quantify the role of environmental conditions, dispersal, and human infrastructure (dams) on stream bacterioplankton, we measured bacterioplankton community composition in rivers from sub-alpine to urban environments in three watersheds (Utah, United States) across three seasons. Of the 53 environmental parameters measured (including physicochemical parameters, solute concentrations, and catchment characteristics), trace element concentrations explained the most variability in bacterioplankton community composition using Redundancy Analysis ordination. Trace elements may correlate with bacterioplankton due to the commonality in source of water and microorganisms, and/or environmental selection creating more or less favorable conditions for bacteria. Bacterioplankton community diversity decreased downstream along parts of the stream continuum but was disrupted where large reservoirs increased water residence time by orders of magnitude, potentially indicating a shift in the relative importance of environmental selection and dispersal at these sites. Reservoirs also had substantial effects on community composition, dissimilarity (Bray-Curtis distance) and species interactions as indicated by co-occurrence networks. Communities downstream of reservoirs were enriched with anaerobic Sporichthyaceae, methanotrophic Methylococcaceae, and iron-transforming Acidimicrobiales, suggesting alternative metabolic pathways became active in the hypolimnion of large reservoirs. Our results identify that human activity affects river microbial communities, with potential impacts on water quality through modified biogeochemical cycling.

9.
Front Microbiol ; 11: 526545, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178141

RESUMEN

Bacteria in stream biofilms contribute to stream biogeochemical processes and are potentially sensitive to the substantial levels of pollution entering urban streams. To examine the effects of contaminants on stream biofilm bacteria in situ, we exposed growing biofilms to experimental additions of nutrients [nitrogen (N), phosphorus (P), and iron (Fe)], pharmaceuticals (caffeine and diphenhydramine), nutrients plus pharmaceuticals, or no contaminants using contaminant exposure substrates (CES) in three catchments in northern Utah. We performed our study at montane and urban sites to examine the influence of existing pollution on biofilm response. We identified bacterial core communities (core) for each contaminant treatment at each land-use type (e.g., nutrient addition montane bacterial core, nutrient addition urban bacterial core, pharmaceutical addition montane bacterial core) by selecting all taxa found in at least 75% of the samples belonging to each specific grouping. Montane and urban land-use distinguished bacterial cores, while nutrients and pharmaceuticals had subtle, but nonetheless distinct effects. Nutrients enhanced the dominance of already abundant copiotrophs [i.e., Pseudomonadaceae (Gammaproteobacteria) and Comamonadaceae (Betaproteobacteria)] within bacterial cores at montane and urban sites. In contrast, pharmaceuticals fostered species-rich bacterial cores containing unique contaminant-degrading taxa within Pseudomonadaceae and Anaerolineaceae (Chloroflexi). Surprisingly, even at urban sites containing ambient pharmaceutical pollution, pharmaceutical additions increased bacterial core richness, specifically within DR-16 (Betaproteobacteria), WCHB1-32 (Bacteroidetes), and Leptotrichiaceae (Fusobacteria). Nutrients exerted greater selective force than pharmaceuticals in nutrient plus pharmaceutical addition treatments, creating bacterial cores more closely resembling those under nutrient rather than pharmaceutical addition, and promoting unique Oscillatoriales (Cyanobacteria) taxa in urban streams. Our results show that additions of N, P, and Fe intensified the dominance of already abundant copiotrophs, while additions of caffeine and diphenhydramine enabled unique taxa associated with contaminant degradation to participate in bacterial cores. Further, biofilm bacteria at urban sites remained sensitive to pharmaceuticals commonly present in waters, suggesting a dynamic interplay among pharmaceutical pollution, bacterial diversity, and contaminant degradation.

10.
Sci Total Environ ; 704: 135297, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31812416

RESUMEN

The mechanisms of Hg and dissolved organic matter (DOM) transport from watersheds to streams remain unclear, especially in snowmelt dominated montane systems. We characterized total Hg concentrations and DOM characteristics during snowmelt by weekly and/or monthly sampling at three locations in the upper Provo River, northern Utah, over two water years (2016 and 2017). Total Hg concentrations increased from <1 ng/L during baseflow to >7 ng/L during the snowmelt period (April-June), with decreasing concentrations from upstream to downstream. Filtered THg concentrations accounted for 65-75% of the unfiltered concentrations, suggesting that Hg is primarily transported in the dissolved phase. Annual THg loading in the upper Provo River was approximately 1 kg/yr, with ~90% of the flux occurring during the snowmelt period. Filtered THg concentrations were strongly correlated with in-situ fluorescence DOM (fDOM) measurements, allowing for the development of high-resolution proxy THg concentrations. Further, DOM characteristics, evaluated using excitation-emission matrices (EEMs) and parallel factor analysis (PARAFAC), identified the dominance of soil humic and fulvic acid fractions of DOM during runoff. Total Hg concentrations were low in snowpack but elevated in ephemeral streams during snowmelt runoff, indicating that Hg originated from shallow soil water rather than snow. Concentration-discharge relationships revealed clockwise hysteresis patterns, suggesting that Hg was flushed from soils on the rising limb of the hydrograph. Our results demonstrate that a majority of Hg transport occurs with a flux of DOM during the short snowmelt season as shallow soils are flushed by meltwater. The snowmelt-driven Hg pulse is a substantial source to downstream reservoirs and potentially contributes to a fish consumption advisory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA