Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065682

RESUMEN

Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3ß pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.

2.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628900

RESUMEN

The role of histamine H3 receptors (H3Rs) in memory and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer's disease (AD), is well-accepted. Therefore, the procognitive effects of acute systemic administration of H3R antagonist E169 (2.5-10 mg/kg, i.p.) on MK801-induced amnesia in C57BL/6J mice using the novel object recognition test (NORT) were evaluated. E169 (5 mg) provided a significant memory-improving effect on MK801-induced short- and long-term memory impairments in NORT. The E169 (5 mg)-provided effects were comparable to those observed with the reference phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and were abrogated with the H3R agonist (R)-α-methylhistamine (RAMH). Additionally, our results demonstrate that E169 ameliorated MK801-induced memory deficits by antagonism of H3Rs and by modulation of the level of disturbance in the expression of PI3K, Akt, and GSK-3ß proteins, signifying that E169 mitigated the Akt-mTOR signaling pathway in the hippocampus of tested mice. Moreover, the results observed revealed that E169 (2.5-10 mg/kg, i.p.) did not alter anxiety levels and locomotor activity of animals in open field tests, demonstrating that performances improved following acute systemic administration with E169 in NORT are unrelated to changes in emotional response or in spontaneous locomotor activity. In summary, these obtained results suggest the potential of H3R antagonists such as E169, with good in silico physicochemical properties and stable retained key interactions in docking studies at H3R, in simultaneously modulating disturbed brain neurotransmitters and the imbalanced Akt-mTOR signaling pathway related to neurodegenerative disorders, e.g., AD.


Asunto(s)
Enfermedad de Alzheimer , Antagonistas de los Receptores Histamínicos H3 , Animales , Ratones , Ratones Endogámicos C57BL , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas , Maleato de Dizocilpina , Antagonistas de los Receptores Histamínicos H3/farmacología , Antagonistas de los Receptores Histamínicos H3/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasa , Serina-Treonina Quinasas TOR , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Transducción de Señal , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...