Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5132, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991008

RESUMEN

The impact of salt crust formation over porous media on water evaporation is an important issue in relation with the water cycle, agriculture, building sciences and more. The salt crust is not a simple accumulation of salt crystals at the porous medium surface but undergoes complex dynamics with possible air gap formation between the crust and the porous medium surface. We report on experiments that allow to identify various crust evolution regimes depending on the competition between evaporation and vapor condensation. The various regimes are summarized in a diagram. We focus on the regime where dissolution-precipitation processes lead to the upward displacement of the salt crust and the generation of a branched pattern. It is shown that the branched pattern results from the crust upper surface destabilization whereas the crust lower surface remains essentially flat. We show that the resulting branched efflorescence salt crust is heterogeneous with a greater porosity in the salt fingers. This leads to the preferential drying of the salt fingers followed by a period in which the crust morphology change only occurs in the salt crust lower region. The salt crust eventually tends toward a frozen state where no visible change occurs in the salt crust morphology, but without blocking the evaporation. These findings provide in-depth insights into the salt crust dynamics and pave the way for the better understanding of the impact of efflorescence salt crusts on evaporation and the development of predictive models.

2.
Sci Rep ; 12(1): 7473, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523854

RESUMEN

Salt crusts forming at the surface of a porous medium are commonly observed in nature as well as on building materials and pieces of our cultural heritage where they represent a risk for the supporting substrate integrity. Previous research indicates that the salt crust can detach from the porous substrate and severely reduces the evaporation. However, the current understanding of the detachment mechanisms and the reduced evaporation is very limited. In the present experiment, we evidence dissolution-precipitation processes as key mechanisms in the detachment process. We also show that the crust remains wet and the observed reduced evaporation is explained by the formation of tiny pores in the nanometer range and the Kelvin effect. The resulting crust permeability is very low. Combined with previous results, this shows that the crust permeability is highly dependent on the crust formation conditions. More generally, salt structures in a water vapor concentration gradient are shown to be self-propelled systems capable to carry small objects such as, for instance, soil particles. Our study has significance for understanding the impact of salt crusts on evaporation and the associated important phenomena, such as soil salinization and porous material degradation inherent to salt crystallization.

3.
Phys Rev E ; 100(3-1): 032802, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31639935

RESUMEN

Salt crusts forming at the surface of a porous medium can dynamically evolve with crust displacements leading to the formations of domes and blisters or simply to the upward migration of the crust. However, the mechanisms explaining the displacements are unclear. It has been conjectured that they could be related to dissolution-precipitation phenomena and/or to mechanical effects associated with the concept of crystallization pressure. We present a simple experiment where the crust upward migration is significant and can be entirely explained from the consideration of dissolution-precipitation phenomena. Equations governing the crust displacement are derived, leading to quite good agreement with the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...